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ABSTRACT
Cataclysmic variables (CV) encompass a diverse array of accreting white dwarf binary systems. Each class of CV represents
a snapshot along an evolutionary journey, one with the potential to trigger a type Ia supernova event. The study of CVs offers
valuable insights into binary evolution and accretion physics, with the rarest examples potentially providing the deepest insights.
However, the escalating number of detected transients, coupled with our limited capacity to investigate them all, poses challenges
in identifying such rarities. Machine Learning (ML) plays a pivotal role in addressing this issue by facilitating the categorisation
of each detected transient into its respective transient class. Leveraging these techniques, we have developed a two-stage pipeline
tailored to the ZTF transient alert stream. The first stage is an alerts filter aimed at removing non-CVs, while the latter is an ML
classifier produced using XGBoost, achieving a macro average AUC score of 0.92 for distinguishing between CV classes. By
utilising the Generative Topographic Mapping algorithm with classifier posterior probabilities as input, we obtain representations
indicating that CV evolutionary factors play a role in classifier performance, while the associated feature maps present a potent
tool for identifying the features deemed most relevant for distinguishing between classes. Implementation of the pipeline in June
2023 yielded 51 intriguing candidates that are yet to be reported as CVs or classified with further granularity. Our classifier
represents a significant step in the discovery and classification of different CV classes, a domain of research still in its infancy.
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1 INTRODUCTION

Cataclysmic variables are a class of compact binary star system in
which a donor star, usually a low mass main sequence star, trans-
fers mass via an accretion disk to a CO white dwarf (WD) via the
mechanism of Roche lobe overflow (Warner 1995; Hellier 2001).
The particulars of mass transfer rate, accretion rate, donor and WD
mass, orbital separation, and magnetic field strength contribute to the
variety of observable phenomena that these systems display. The clas-
sification structure of CVs is based on a combination of photometric
variability, X-ray characteristics, spectroscopy, and polarimetry mea-
surements.

Thermal and viscous instabilities in the accretion disk, described
by various incarnations of the disk instability model (Mineshige &
Osaki 1985; Lubow 1991; Osaki 1996), cause semi-regular bright-
ening events each referred to as a dwarf nova outburst. Systems
that undergo dwarf nova outbursts are named dwarf novae. Outburst
amplitudes typically lie in the 2-5 magnitude range usually last-
ing between a few days to a fortnight, recurring on timescales of
days to months; these attributes are specific to a given system. The
dwarf nova class can be further subdivided into the U Geminorum
(U Gem), Z Camelopardalis (Z Cam), and SU Ursae Majoris (SU
UMa) subclasses. Standstills (periods of constant brightness) and
superoutbursts (dwarf novae outbursts of greater amplitude and du-

★

ration), respectively, distinguish the Z Cam and SU UMa subclasses
from one another and U Gem, which display only ’normal’ outbursts
(e.g., Simonsen et al. (2014); Szegedi et al. (2022). Extremes in the
recurrence times of superoutbursts (supercycles) facilitate two major
SU UMa subclasses, the ER Ursae Majoris type (Kato et al. 2013),
distinguished by extremely short supercycles with rapid fire normal
outbursts in between, and WZ Sagittae systems that appear to display
no normal outbursts, only superoutbursts, with supercycle lengths of
order years (e.g., Shugarov et al. 2021).

Stable (hot and viscous) accretion disks give rise to systems with
almost constant brightness, referred to as nova-likes. Some nova-
like stars undergo periods where mass transferred from the donor is
either diminished or even completely suppressed. Consequently, a
drop in brightness of 3–6 mag in the optical occurs. These systems
are referred to as VY Sculptoris stars (Honeycutt & Kafka 2004;
Schmidtobreick et al. 2018) - a nova-like subtype. Whilst, there exist
four nova-like subtypes, three distinguishable spectroscopically, VY
Scl is the only one that can be identified photometrically.

Novae are modelled as thermonuclear runaway events within the
accreted layer of hydrogen on the WD surface (e.g., Bode & Evans
2008; Munari 2012; Chomiuk et al. 2020; Darnley & Henze 2020,
they produce a sudden high amplitude (8-15 magnitudes typically)
increase in optical brightness with a long duration decline (weeks to
years). Recurrence times are largely dependent on the WD mass and
donor mass transfer rate. Recurrent novae (RNe) have been observed
to undergo more than one nova eruption, with recurrence times below
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100 years, while for classical novae (only one eruption observed) this
is likely to extend up to 100,000 years.

Where the WD is strongly magnetic, with magnetic fields of
𝐵 > 10𝑀𝐺, the formation of an accretion disk is inhibited, in-
stead the mass transfer stream from the donor is directed out of the
orbital plane and funneled by the magnetic field lines directly onto
one or both of the WD’s magnetic poles. Referred to as polars, or
AM Herculis stars (Cropper 1990; Thorstensen et al. 2020), the WD
rotates synchronously with the orbital period causing the accretion
flow to always interact with same field lines. Their photometric vari-
ability is a consequence of the complex interplay between intrinsic
and extrinsic sources of variability; high and low states of brightness
(as a consequence of fluctuations in the rate of mass transferred by
the donor) and orbital period modulations of few tenths of a magni-
tude, due to obscuration of the accretion flow or spot behind the limb
of the WD, contribute to the superposition of both short (hours) and
long (weeks to months) timescale photometric variability.

Intermediate polars (or DQ Herculis stars) represent the interme-
diary between polars and non-magnetic CVs with magnetic field
strengths of between 1 and 10 MG (Patterson 1994; Ramsay et al.
2008). A partial accretion disk may form, though disruption occurs
closer to the WD causing magnetically controlled accretion at smaller
radii. Photometrically, they can display modulations due to the WD
spin period (non-synchronous rotation) and the sideband period be-
tween the spin and orbital periods. Possibly also present are low
amplitude dwarf nova outbursts due to the truncated nature of the
accretion disk, and high and low states in brightness (e.g., Šimon
2021).

The AM Canum Venaticorum stars (Solheim 2010; Levitan et al.
2015) are rare and ultra-short period (5-65 minutes) binaries where
the donor is believed to be either another degenerate or a semi-
degenerate star composed mostly of helium. They are characterised
by their blue colour, due to the WD dominating the flux contribution
over an extremely low mass donor (within Gaia DR3 Gaia Collabo-
ration et al. 2022 the BP-RP colour is typically less than 0.6); strong
helium emission and absence of hydrogen within their spectra. Photo-
metrically, their variability is dependent on their orbital period, those
with period between 22 and 51 minutes tend to display the outburst-
ing characteristics of their hydrogen rich counterparts though with
lower duration and amplitude (Ramsay et al. 2018). The diversity of
ZTF light curves for each class of CV is shown in Figure 1.

Wide field, high cadence and panchromatic surveys such as the
Sloan Digital Sky Survey (SDSS; York et al. 2000), the (intermedi-
ate) Palomar Transient Factory (iPTF; Cao et al. 2016), the Dark En-
ergy Survey (DES; Sánchez 2010), and new ongoing surveys such as
the Zwicky Transient Facility (ZTF; Bellm et al. 2019), the Asteroid
Terrestrial-impact Last Alert System’ (ATLAS; Tonry et al. 2018),
and the Gravitational-wave Optical Transient Observer (GOTO; Dyer
et al. 2022) have dramatically improved our ability to discover these
objects. These discoveries have helped fill gaps in our current knowl-
edge, for example, constantly evolving models are being developed
attempting to explain the diversity of dwarf nova outbursts based on
the disk instability model (Kotko et al. 2012; Hameury 2020); Knigge
et al. (2011) was able to construct semi-empirical models for the evo-
lution of CVs based on donor star masses and radii; the discovery
of a genuine standstill in the AM CVn CR Boo helps to support the
viewpoint of AM CVns being the helium rich analogue of hydrogen
rich CVs (Kato et al. 2023); and the larger sample size of all CVs
facilitates a disentanglement of CV subtypes within a H-R diagram
(Abrahams et al. 2022). However, discoveries also uncover new gaps
too, such as the detection of pulsed X-rays in two AM CVns that
not only raises the question of magnetically controlled accretion in

AM CVns but leads to implications for their evolutionary timescales
(Maccarone et al. 2023). To accelerate our current understanding of
CVs and in turn accretion mechanisms in transients such as X-ray bi-
naries and active galactic nuclei (AGN), we require a greater sample
size of CV members, especially the more elusive subclasses.

The identification of new and rare/unique CV candidates from sur-
vey data is becoming an ever more difficult task due to the challenge
of efficiently finding them amongst the large numbers of sources ex-
hibiting significant variability that are detected every night. Sources
responsible include, but are not limited to, supernovae, variables
stars, AGN, tidal disruption events, and Solar System objects that in-
clude asteroids, as well as artifacts (bogus alerts). In the case of ZTF,
transient alert rates can exceed a million per night (Patterson et al.
2019), and this rate is set to be dwarfed by the Rubin Observatory
(Ivezic et al. 2019). As a further side effect, facilities devoted to the
follow-up of transient events are not enough in number to investigate
them all, therefore time on such facilities is in short supply. Since
the majority of genuine astrophysical sources may serve only to reaf-
firm our current understanding of the transient classes to which they
belong, follow-up time will be reserved for the minority, those that
present a challenge to or help further our understanding.

Machine learning (ML) is widely acknowledged as a powerful
set of techniques ideally suited to address these challenges, with
applications to source classification. For example , the classification
of ZTF alerts by Förster et al. (2021), CRTS light curves by Neira
et al. (2020) and the recent utilisation of ML in the separation of
Gaia transients into over 25 different classes (Rimoldini et al. 2022).
Specific focus on automated identification of CVs and their subtypes
is an active, though underdeveloped, field of research. Examples so
far include the 497 CVs uncovered from ZTF alerts by applying
simple colour, amplitude and variability timescale filters (Szkody
et al. 2020, 2021); an extension of this filter approach by van Roestel
et al. (2021), employing Gaia and PanSTARRS colours to identify
nine outbursting AM CVns within ZTF alerts; and application of ML
to identify CVs within Gaia Science Alerts (Mistry et al. 2022).

Here are presented details of our development and application of
an automated ML pipeline aimed at identifying the various classes
of CVs from the ZTF alert stream via the Lasair alerts broker (Smith
et al. 2019). We start by explaining the initial alerts filtering using
Lasair (Section 2.1) before moving on to describing the construction
of our dataset upon which a ML classifier is generated (Sections 2.2
- 2.5). Sections 2.6 - 2.11 describe the ML techniques adopted and
algorithms tested. The results of our efforts to generate a suitable ML
CV classifier for our pipeline are presented in Section 3 along with
its initial outcomes based on implementation. The discussion of our
results (Section 4) will be given in the context of light curve profiles
and the underlying physical properties of the CV subtypes.

2 METHOD

2.1 Alerts filter

Alert streams from ZTF are ingested by alerts brokers such as Lasair
(Smith et al. 2019) and Alerce (Förster et al. 2021). They provide
real-time alerts access, as well as science, difference and reference
image cutouts, light curves of the associated ZTF object, contex-
tual information, statistics derived from source photometry, and the
ability to cross-match events with catalogued sources. Brokers pro-
vide the ability to filter alerts based on the above in order to focus
on those that are most relevant to their science goals. Our pipeline
experiments with Lasair’s cross-matching and filtering services to
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Figure 1. Example light curves of each CV class. Green and red points indicate g and r band observations respectively.
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focus on objects that lie within the typical parameter space of CVs
as a first stage before implementation of our ML classifier.

To remove non-CV catalogued sources, the Sherlock classifica-
tion software (Smith et al. 2020), implemented by Lasair for cross-
matching, is examined. Sherlock uses a model, generated by a boosted
decision tree algorithm, that mines a database of historical and on-
going astronomical survey data to predict the nature of the object
based on the resulting crossmatches. The database include datasets
from all-sky surveys as well as more source specific catalogues such
as the Million Quasars Catalog (Flesch 2019), Downes Catalog of
CVs (Downes et al. 2001), and the Ritter Cataclysmic Binaries Cat-
alog v7.24 (Ritter & Kolb 2003). Sherlock assigns the label Vari-
able Star (VS), Cataclysmic Variable (CV), Active Galactic Nuclei
(AGN), or nuclear transient (NT) should the transient be located
within the synonym radius (1.5") of a catalogued point source or, in
the case of a NT, the core of a resolved galaxy; a supernova (SN) if
not classified as a NT but is found close enough to a resolved galaxy
to be deemed physically associated; a Bright Star (BS) if the transient
is not matched against the synonym radius of a star but is associated
within the magnitude-dependent association radius; Orphan if the
transient fails to be matched with a catalogue source; or Unclear oth-
erwise. In an effort to limit alerts of non-CVs we experimented with
the use of Sherlock, and catalogue cross-matching. The remaining
sources are then subject to colour and magnitude change cuts akin
to those described in Szkody et al. (2020, 2021). In those works, the
ZTF alert stream filtering involved looking for point sources with g-r
colour < 0.6 and a magnitude change Δ𝑚 >= 2 within a timescale
of 2 days in the g band. This resulted in a total of 701 known or
candidate CVs over two years of its implementation that typically
displayed dwarf nova outbursts and changes in accretion state. We
relaxed these constraints with respect to Szkody et al. (2020, 2021)
to maximise the number of targets for classification. In performing a
cut based on colour, attempts were made to account for several fac-
tors: differences in the sampling between the g and r band; sampling
differences between outburst activity and quiescence; and the ten-
dency of CVs to have bluer colours during outbursting phases than
during quiescence (a consequence of the enhanced accretion and in-
creased temperature of the disk during outburst). Therefore, for each
source, the colour for each night of observation was extracted (where
calculable); the mean and median averages of these were recorded
along with the colour at maximum and minimum brightness. The
constraint of <=0.7 for each of these quantities, as well as for the
overall mean colour (calculated without the epochal requirement)
was utilised. Figure 2 shows that a significant fraction of CVs will
be recovered at or below the epochal mean g-r of 0.7. This constraint
is flexible, based on the type of CV we may wish to focus our at-
tention on. Constraints placed on magnitude change, Δ𝑚, involved
experimenting with various thresholds. A higher Δ𝑚 yielded sources
with more rapid variability, e.g., Z Cam systems, while lower values
increased the contribution of sources akin to nova-likes. Given that
alerting sources that the filter outputs are entered into a ML classifier
to distinguish these variability differences, foregoing aΔ𝑚 constraint
is the approach adopted.

2.2 Source List

The light curves and associated metadata (see the following subsec-
tion) of the sources remaining after the Lasair filter are used as input
for a ML based CV subclass classifier. The classifier is trained on the
ZTF g and r band light curves of catalogued CVs whose subtypes
have been ascertained along with associated Gaia Data Release 3
data (Gaia Collaboration et al. 2022) where available. This section

describes the nature of the data set for training and testing of candi-
date classifiers.

To construct a dataset we consulted the American Association
of Variable Star Observers Variable Star Index (VSX1) which is
a continuously updated repository of transient sources. Confirmed
CVs from archival resources such as The Catalogue and Atlas of
Cataclysmic Variables 2 (Downes et al. 2001), and the catalogue of
cataclysmic binaries, low-mass X-ray binaries and related objects3

(Ritter & Kolb 2003) are contained within the repository, as are more
recent discoveries detailed in literature (e.g., Wenger et al. 2000;
Szkody et al. 2020; van Roestel et al. 2022). Each repository source
has a dedicated page where further information can be found such
as their designated names in other surveys, references to literature
for that source, orbital periods, and more. The labelling procedure
conducted by VSX involves constant review and revision of metadata,
with citations for any new details and rationales behind changes fully
documented. VSX contained a list of over 15,300 targets classified
as CV, of which 5683 were successfully cross matched with ZTF
alerts objects. We supplemented this list with novae catalogued in
the Bright Transient Survey4 (BTS) and not in the AAVSO list. This
constituted an extra 28 sources making a total of 5708 CVs. The vast
majority (4822) were of the dwarf nova subclass. Since we aim for a
more granular classification than that, we refined our sample further
to only include dwarf nova examples with further subdivision into
the U Gem, Z Cam, and SU UMa subtypes. This left us with a dataset
of 1568 samples.

2.3 Light curves

The light curves themselves are generated from observations with
the 47 square-degree camera mounted on the Samuel Oschin Tele-
scope at Palomar Observatory in California (Harrington 1952). For
a 30 second exposure the median 5𝜎 limiting magnitude is 20.8 in
the g band and 20.6 in the r band. The observing strategy involves
three surveys, the g and r band data for two of which are available
publicly. The Northern sky survey is a three-day cadence survey of
all fields north of -31deg, while the Galactic plane survey observes
daily within 7deg of the Galactic plane. For both surveys, each night
a field is observed, it is observed twice, once for each of the g and r
bands, and at least 30 minutes between visits. With these cadences,
superoutbursts, whose durations range from a few days to several
weeks, are well sampled, as are nova eruptions, high and low states
of brightness, and standstills. The g and r band also provide colour
information, a further tool for class separation.

Light curves of cross matched sources were downloaded from
Lasair. Brightness values are given in difference magnitudes, this
is the magnitude derived from the positive difference between the
flux in the reference image and that in the science image. Where a
source contains data points below the reference flux, the difference
magnitude light curve profile may deviate from that one would expect
for its transient class. Subsequently, these difference fluxes were
converted to apparent magnitudes where possible. The formulae used
to convert from difference magnitudes to apparent magnitudes and
associated errors are given by:

𝑚corr = −2.5 log10 (10−0.4𝑚ref + 𝑠𝑔𝑛 10−0.4𝑚diff ) (1)

1 https://www.aavso.org/vsx/index.php
2 https://heasarc.gsfc.nasa.gov/W3Browse/all/cvcat.html
3 https://heasarc.gsfc.nasa.gov/W3Browse/all/rittercv.html
4 https://sites.astro.caltech.edu/ztf/bts/bts.php
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Figure 2. Colour magnitude diagrams using Gaia G band absolute magnitude and the colour derived from the ZTF g and r bands. The dashed red line in each plot
denotes the ZTF g-r colour threshold of 0.7. Orange points in each subplot denote examples of a particular CV class, while the blue points represent examples
belonging to the remaining classes (labelled ”other”).

𝛿𝑚corr =
(10−0.8𝑚diff 𝛿𝑚2

diff)
0.5

10−0.4𝑚ref + 𝑠𝑔𝑛 10−0.4𝑚diff
(2)

where we simply convert the difference 𝑚diff and reference 𝑚ref
magnitudes to fluxes, sum them considering the sign of the alert
(𝑠𝑔𝑛) and convert the results back to magnitude 𝑚corr. Simple error
propagation gives the error 𝛿 𝑚corr.

To be included into our dataset, two main vetting procedures were

followed. The first was to verify the label by checking the references
associated with the source. This was easier for the less prevalent
classes such as the magnetic systems and AM CVns, where mem-
bership can only be verified by means beyond photometry (e.g.,
spectroscopy, and pulsed X-ray detection), and for dwarf novae fur-
ther subdivided into the SU UMa and Z Cam classes. For U Gem
dwarf novae and those dwarf novae not divided into subclasses,
references to literature were less readily available. A second vet-
ting procedure involved inspection of the light curves themselves,

MNRAS 000, 1–27 (2015)
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Class/subclass Number of targets

SU Ursae Majoris 630
Z Camelopardalis 174

U Geminorum 116
nova-like VY Sculptoris 120

nova-like non VY Sculptoris 123
nova 46
polar 114

intermediate polar 49
AM Canum Venaticorum 46

Table 1. Number of targets per CV class within the dataset.

where missclassifications were identified and their appropriateness
for dataset inclusion could be assessed. In assessing their suitability
for inclusion we considered whether phenomena characteristic to a
given transient type (e.g., standstills or nova eruption) were present,
the number of datapoints, and whether colour information may be
derived. One must be careful to omit examples based on the number
of data points, as a limited number may be representative of sources
only visible during brightening events. With this consideration in
mind, a minimum threshold of at least four points in at least one filter
was set.

Example ZTF light curves for each of the classes defined in the fol-
lowing section are given in Figure 1. Aside from the usual observing
gaps due to the time of year, the limiting magnitude of the telescope
in combination with the brightness of the source results in a variety
of observational timespans - objects below the limiting magnitude
in quiescence may briefly rise into view during episodes of activity,
e.g., ZTF22abgglcz and ZTF19aavkbfk. Outbursts of different cycle
lengths (time between successive outbursts) are clearly evident for
dwarf novae, as are superoutbursts (e.g., ZTF18abosmfh). Evident
also are standstills (e.g., ZTF17aaaeepz), long term changes (high
and low brightness states) due to changes in mass transfer rate (e.g.,
ZTF18aasncio, ZTF18abcjzao, and ZTF18abryuah), and the various
outburst profiles of nova eruptions.

2.4 Classification structure

With our task firmly routed in distinguishing between the different
types of CV, we settled on a nine class classification structure that
separated the dwarf nova class into their three main subtypes, SU
UMa, Z Cam, and U Gem; distinguished between nova-likes and
nova-likes containing the VY Scl characteristic (see introduction);
separated the magnetic CVs into their polar and intermediate polar
subclasses; with novae and AM CVns making up the remainder.
The structure is motivated by the desire for a model that classifies
to the highest level of class granularity (to group examples by their
most unique traits) while at the same time balancing this desire with
the requirement of enough examples to represent the class. This
unfortunately inhibits our ability to separate the WZ Sge and ER
UMa systems from their parent class (SU UMa), and separate novae
by their various light curve profiles.

Table 1 shows the number of examples per CV class following our
vetting procedures. The list is understandably heavily biased towards
dwarf novae due to their ubiquity within the CV population.

2.5 Features

2.5.1 ZTF Light curve derived features

To distinguish between the classes of CV, statistical, percentile and
periodicity based features were extracted from the g and r band
source light curves. The suite of features provided by the feATURE
eXTRACTOR FOR tIME sERIES (feets) python package (Cabral
et al. 2018) is comprehensive enough to describe the vast majority of
variability characteristics present within our light curves. We there-
fore make use of them with the addition of several features of our
own that are more specifically geared towards CV variability. Non-
outbursting systems such as nova-likes and polars are generally well
characterised by the feets feature set. The diversity of outbursting
systems however, are less well characterised after baseline models
revealed the confusion between classes exhibiting such behaviour.

As described in Otulakowska-Hypka et al. (2016), the typical ob-
serving cadence, sampling consistency (affected by weather), limit-
ing magnitude and the number of filters that a survey operates under
governs our ability to visually recognise and extract features that ac-
curately describe the different types of variability displayed by dwarf
nova exhibiting systems. Sub-optimal conditions related to the above
inhibit the usefulness of the features extracted. Given the level of
classification granularity desired in this work, we developed several
simple features that may recognise the presence of phenomena such
as superoutbursts, standstills, and their properties.

The find_peaks function from the scipy python package locates
signal peaks (outbursts peaks in our case) by simply comparing
neighbouring brightness values. Not all peaks are identifiable due to
undersampled outburst and quiescent phases, and intricacies of the
function, though enough useful information is present to obtain the
following: an outburst amplitude based on the peak with the largest
such value; and rise and decline rates based on the minimum time be-
tween outburst peaks and their bases. These features were evaluated
for specific outburst amplitude ranges. Recurrence rates are best de-
scribed by the frequency at which the maximum power of the Lomb
Scargle periodogram of the light curve occurs. The Lomb Scargle
method will output a value even if outbursts or strong periodic signals
are not observed. The ratio of the maximum power to the mean power
is therefore used to distinguish strong from weak periodic signals.
With respect to standstills, obvious instances can be characterised by
utilising a rolling standard deviation window. Sources with standstills
will have windows with high standard deviation values during out-
bursting periods and low values during standstills. A high ratio of the
maximum of the former to the minimum of the latter can detect this
dichotomy. This dichotomy however, is also present in outbursting
systems with well defined quiescent phases (without standstills). One
is separated from the other by including the mean brightness level of
the window with the minimum standard deviation. A brightness level
appreciably higher than the minimum brightness aims to provide the
distinction.

Colour is a useful separator of different CV subtypes. In addition to
the g-r colour calculated from the average brightness in each filter, we
derive the colour for each night where both a g and r band observation
was recorded. We include the mean and median of these as features
to mitigate the skewing of colour values due to sampling differences
between the bands during outburst and quiescence phases. Further-
more we include the colour at maximum and minimum brightness to
account for bluer colours during outbursting phases. All light curve
derived features are given in Tables 2 and 3.
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Table 2. Features extracted from each of the g and r band light curves. Listed are those available from the feets package, where for each a more detailed
explanation is provided at https://feets.readthedocs.io/en/latest/tutorial.html.

Feature Description

Amplitude Half of the difference between the median of the maximum 5% and the median of the minimum 5% magnitudes
AndersonDarling The Anderson-Darling test is a statistical test of whether a given sample of data is drawn from a given probability

distribution (normal distribution)
Autocor_length Cross-correlation of a signal with itself. Informally, described as the similarity between observations as a function

of the time lag between them, useful for finding repeating patterns. Autocorrelation returns a vector, the feature
returns the vector length for values less than 𝑒−1.

Beyond1Std Percentage of points beyond one standard deviation from the weighted mean (weighted by the square of the
inverse error).

CAR_mean The mean parameter used to model irregularly sampled time series with the continuous time auto regressive
model (Brockwell & Davis 2002).

CAR_sigma The variability parameter used to model irregularly sampled time series with the continuous time auto regressive
model.

CAR_tau The tau parameter used to model irregularly sampled time series with the continuous time auto regressive model.
Interpreted as the variability amplitude of the light curve.

Con The number of three consecutive data points that are brighter or fainter than 2𝜎 and normalised the number by
N-2.

Eta_e (𝜂𝑒) Variability index 𝜂 is the ratio of the mean of the square of successive differences to the variance of data points.
FluxPercentileRatioMidX Ratio of centred flux percentile ranges. If 𝐹5,95 is the difference between the 95th and 5th percentile of ordered

magnitudes, then FluxPercentileRatioMidX = 𝐹40,60/𝐹5,95, 𝐹32.5,67.5/𝐹5,95, 𝐹25,75/𝐹5,95, 𝐹17.5,82.5/𝐹5,95,
and 𝐹10,90/𝐹5,95, for X = 20, 35, 50, 65, and 80 respectively.

Freqi_harmonics_amplitude_j Amplitude of the jth harmonic of the ith frequency component of the Lomb Scargle Periodogram
Freqi_harmonics_rel_phase_i The phase corresponding to Freqi_harmonics_amplitude_j relative to the phase of the first frequency component.
Gskew Median-of-magnitudes based measure of the skew
LinearTrend Slope of a linear fit to the light-curve
MaxSlope Maximum absolute magnitude slope between two consecutive observations
Mean Mean magnitude
Meanvariance Ratio of the standard deviation to the mean magnitude
MedianAbsDev Median absolute deviation of magnitude
MedianBRP Median Buffer Range Percentage; Fraction (<= 1) of photometric points within amplitude/10 of the median

magnitude.
PairSlopeTrend Considering the last 30 (time-sorted) measurements of source magnitude, the fraction of increasing first differ-

ences minus the fraction of decreasing first differences
PercentAmplitude Largest percentage difference between either the max or min magnitude and the median
PercentDifferenceFluxPercentile Ratio of the difference between the 95th and 5th percentile of ordered magnitudes, 𝐹5,95, over the median

magnitude.
PeriodLS Period corresponding to frequency of maximum power in the Lomb Scargle Periodogram
Period_fit The false alarm probability of the largest Lomb Scargle periodogram value.
Psi_CS RCS applied to the phase-folded light curve (generated using the period estimated from the Lomb-Scargle

method).
Psi_eta 𝜂𝑒 index calculated from the phase-folded light curve
Q31 Difference between the third and first quartile of the light curve magnitudes
Rcs Range of a cumulative sum (RCS) of the light curve. Defined as: RCS = max(S) - min(S), where 𝑆 =

1
𝑁𝜎

∑𝑙
𝑖=1 (𝑚𝑖 − 𝑚̄) . 𝑁 represents the number of points, with 𝑖 = 1, 2, ..., 𝑁 .

Skew Skewness of the magnitudes
SlottedA_length Slotted autocorrelation length - same as Autocor_length except that time lags are defined as intervals or slots

instead of single values
SmallKurtosis Small sample kurtosis of the magnitudes.
Std_g Standard deviation of magnitudes.
StetsonK Robust measure of the kurtosis (Stetson 1996).
StetsonK_AC Variability index derived based on the autocorrelation function of each lightcurve (Stetson 1996).
StructureFunction_index_21
Q31_colour Q31 applied to the difference in the g and r band magnitudes.
StetsonJ A robust version of the Welch/Stetson variability index I (Stetson 1996) describing the synchronous variability

of different bands.
StetsonL Variability index describing the synchronous variability of different bands that utilises both StetsonJ and StetsonK.

2.5.2 Features derived from Gaia

In addition to the light curve based features, we also included data
from Gaia DR3 (Gaia Collaboration et al. 2022). From Gaia we
made use of G band, red photometer (RP), and blue photometer (BP)

filter photometry, including colours and astrometric data (such as
parallax and proper motion). Distances and absolute magnitudes are
also derived. These supplementary data are included as features that
are described in Table 4. Such metadata are not available for every
source, and we would not expect this information to be available for
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Table 3. Additional light curve derived features implemented in this work.

Feature Description

median Median of magnitudes.
min_mag Minimum magnitude (maximum brightness).
max_mag Maximum magnitude (minimum brightness).
n_obs Number of light curve data points.
dif_min_mean Difference between minimum and mean magnitude.
dif_min_median Difference between minimum and medium magnitude.
dif_max_mean Difference between maximum and mean magnitude.
dif_max_median Difference between maximum and median magnitude.
dif_max_min Absolute difference between maximum and minimum magnitude.
temporal_baseline Duration of the light curve.
pwr_max Maximum power of Lomb Scargle periodogram.
pwr_maxovermean Maximum over the mean power of the Lomb Scargle periodogram of the light curve.
npeaks_XtoY Number of peaks with amplitude between X and Y. X ∈ (0.5, 1, 2) and Y ∈ (1, 2, 5) . npeaks_above5 for peaks

above 5 magnitudes.
rrate_XtoY Maximum rise rate of peaks with amplitude between X and Y.
drate_XtoY Maximum decline rate of peaks with amplitude between X and Y.
amp_XtoY Maximum amplitude of peaks with amplitude between X and Y.
rollstd_ratio_tAsB Calculate the rolling standard deviation of the light curve with a window size B ∈ (5, 10) , where the threshold

for the minimum light curve data points, A ∈ (10, 20) , is met. The ratio of the highest to lowest standard
deviation of these windows is the output.

stdstilllev_tAsB Ratio of the mean magnitude of the window with the lowest standard deviation to the magnitude range of the
light curve - i.e., standstill location relative to the maximum brightness.

pnts_leq_rollMedWin20-Cmag Number of data points within a rolling window of 20 observations that are brighter than C magnitudes of the
median magnitude of that window, where C ∈ (1, 2, 5, ) .

pnts_geq_rollMedWin20-Dmag Number of data points within a rolling window of 20 observations that are fainter than C magnitudes of the
median magnitude of that window, where D ∈ (1, 2, 3) .

pnts_leq_median-Emag Number of data points brighter than E magnitudes of the median magnitude of the light curve, where E ∈
(1, 2, 5) .

pnts_geq_median-Fmag Number of data points fainter than F magnitudes of the median magnitude of the light curve, where F ∈ (1, 2, 3) .
clr_mean Mean of the colours derived at each epoch (night) where an observation in both the g and r band was obtained.

Where no epochal colour information is available for a source, the difference between the mean g magnitude and
mean r magnitude is used.

clr_median Same process as used to calculate clr_mean, this time with the median instead of mean magnitude.
clr_std Standard deviation of the epochal colour.
clr_bright Colour obtained from epoch where the system is at its brightest. Where epochal colour is unavailable, this is the

difference between the minimum g and r band magnitudes.
clr_faint Colour obtained from epoch where the system is at its faintest. Where epochal colour is unavailable, this is the

difference between the maximum g and r band maximum.

new sources of unknown class that we wish to classify. We discuss
this issue in subsection 2.9.

2.6 Training, validation and test sets

Supervised classification algorithms require a training dataset for
learning patterns and relationships present within the data to gener-
ate a model capable of inference. Training set examples are selected
from the original dataset, the remainder of which is used for testing
of the resultant model. Should the dataset be sufficiently large, a val-
idation set, usually the same size as the test set, will also be obtained.
The validation set is used to tune algorithm specific parameters (or
hyperparameters) that control how a model is trained, while the test
set is held back, taking no part in the training and model tuning
process. The size of our dataset is insufficient for a separate valida-
tion set, with minority class examples numbering only a few dozen.
We therefore opt for a technique designed for such cases, stratified
k-fold cross-validation. This involves splitting the training set into k
separate subsets (or folds) in a stratified manner - each fold contains
the same class proportions as the overall training set. A model is
trained on k-1 folds and evaluated, based on a given metric, on the

remaining fold (validation fold); this step is repeated until each fold
has partaken in the validation process. The metric scores for each of
the k models are mean averaged to produce a cross validation score.
This technique allows us to maintain an adequately sized training
set and serves to assess the consistency of our model (and data). We
use a stratified train-test set split ratio of 70:30 and use a 10-fold
stratified cross-validation procedure for hyperparameter tuning and
model evaluation. The 70:30 split holds back for testing at least a
dozen examples for minority classes whilst providing a high propor-
tion of examples for the algorithm to learn patterns during training
and for validation.

2.7 Feature selection

Our dataset consists of over 250 features, and with only 1439 ex-
amples, we introduce the ‘curse of dimensionality’ (Bellman 1957),
which refers to a set of problems arising from high dimensionality
datasets. As you add dimensions (features) you rapidly increase the
minimum amount of samples required to adequately represent all
combinations of feature values in your dataset. Increasing the dimen-
sionality increases the complexity of the model whilst also causing
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Table 4. Supplementary data from Gaia EDR3 incorporated as dataset features

.

Feature Description

ra, dec, ra_error, dec_error Right ascension, declination, and associated standard errors
l, b Galactic longitude and Galactic latitiude
ecl_lon, ’ecl_lat Ecliptic longitude and Ecliptic latitude
bp_rp, bp_g, g_rp BP-RP, BP-G, and G-RP colours
phot_X_mean_flux Mean flux in the G, integrated BP, or integrated RP bands - corresponding to X = g, bp,

or rp respectively
phot_X_mean_flux_error Error on the mean flux in the X band
phot_X_mean_mag Mean magnitude in the G, integrated BP, or integrated RP bands - corresponding to X =

g, bp, or rp respectively
parallax, parallax_error Gaia parallax in milliarcseconds (mas) and standard error
pm Proper motion (mas/year)
pmra_error, pmdec_error Standard error of the proper motion in right ascension and declination directions

(mas/year)
phot_g_n_obs, phot_bp_n_obs, phot_rp_n_obs Number of observations in the Gaia G, BP, and RP bands.
phot_g_mean_mag, phot_bp_mean_mag, phot_rp_mean_mag Mean magnitude in the Gaia G, integrated BP and RP bands
distance Distance to the source derived from the inverse parallax (parsecs)
absmag_g, absmag_BP, absmag_RP Absolute Gaia G, integrated BP and RP magnitudes derived from parallax.
nu_eff_used_in_astrometry Effective wavenumber of the source. Calculated as the photon-weighted inverse wave-

length, calculated from the BP and RP spectra (𝜆−1).

the model to become increasingly dependent on the training set, thus
leading to overfitting. Selecting the features most informative for
our task enables ML algorithms to train faster, reduces complexity
allowing for easier interpretation, reduces overfitting, and can im-
prove model accuracy for the right subset of features. To identify the
optimal feature subset, the Variance Inflation Factor (VIF; Vu et al.
2015), the one-way Analysis Of Variance (ANOVA; Quirk 2012), and
the mutual information score (Quirk 2012) methods were examined
from the filter feature selection family that measures the relevance
of features by their correlation with the dependent variable. From
the wrapper method family, that examines the usefulness of a subset
of features by training a given model on them, the forward feature
selection method was chosen. These methods were applied to the
training set only to avoid data leakage - information about the target
being present in the training set that would not be available when
the model is used for prediction (Singhi & Liu 2006; Demircioğlu
2021).

2.7.1 Forward Feature Selection

Forward feature selection (FFS) is an iterative method starting with
a model with no features. With each iteration we add a feature, the
one that produced the greatest increase in a performance metric as
measured on a validation set. The process continues until no further
performance increase is measured. The set of selected features may
differ based upon the choice of machine learning algorithm (Section
2.10). Different algorithms often work best with distinct subsets of
features, and the method can adapt to these individual requirements.

FFS is utilised for all but the Decision Tree based algorithms (Sec-
tion 2.10.1) as they naturally determine the most important features
during the tree-building process.

2.7.2 Variance Inflation Factor (VIF)

VIF is a method used to detect multicollinearity - the existence of a
linear relationship between two or more explanatory (independent)
variables. It measures how much the variance of the estimated re-

gression coefficients are inflated as compared to when the predictor
variables are uncorrelated. It is found by regressing each independent
variable on the remaining independent variables to assess the degree
to which it is explained by the remaining variables. VIF is given by:

𝑉𝐼𝐹 =
1

1 − 𝑅2 (3)

where

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
(4)

where 𝑆𝑆𝑟𝑒𝑠 is the sum of squared residuals to the line of best fit in
a linear regression model, while 𝑆𝑆𝑡𝑜𝑡 is the sum of squared residuals
to the average value. One uses this selection method by iteratively
removing features with the highest VIF and recalculating the metric.
A VIF equal to 1 represents the absence of multicollinearity, while
the effects of multicollinearity increases with increasing VIF. While
it is desirable to have VIF as close to 1 as possible, this generally
leads to the removal of variables that have a high positive impact on
model performance if we are not careful with our implementation of
the technique. One must be careful to assure the feature calculation
is present in some form within remaining features to maintain the
associated information. VIF is particularly beneficial when dealing
with feature redundancy that may arise when a feature is derived
from both the g and r bands. We experimented with VIF values of
10, 5, 2.5, and 1.5 for all but the Decision Tree based algorithms
since decision trees select features in a greedy fashion and make no
assumptions on relationships between features.

2.7.3 One-way ANOVA

One-way ANOVA compares the mean value of a variable for each
of three or more groups. It determines if any of those means are sta-
tistically significantly different from each other. The null hypothesis
states that there is no statistically significant difference between any
two group means:
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𝐻0 = 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = ... = 𝜇𝑘 (5)

where 𝜇 is a group mean and 𝑘 is the number of groups. The alter-
native hypothesis states that at least one of the groups is statistically
significantly different from another at a significance threshold of 5%.
This statistic was used to identify the significance of each feature or-
dered by p-value. A given algorithm was then trained using the top
𝑥% of the most significant features and the model cross validation
performance recorded. This step was repeated, increasing the values
of 𝑥 in 5% increments from 5% to 95%, to arrive at a subset of fea-
tures where model performance was strongest. This method is akin
to forward feature selection, though with features added based on a
statistical test rather than overall model performance. The motivation
for the usage of one-way ANOVA lies in its goal to select a set of
features that hold significant importance in differentiating between
classes. As with FFS and VIF, this approach was only performed
with non Decision Tree based algorithms.

2.7.4 Mutual information

Mutual information (MI) is the application of information gain (typ-
ically used in the construction of decision trees) to feature selection.
The MI score measures the degree to which two variables are related.
A score of zero is produced if the two variables are independent, and
higher values for higher dependencies. For two jointly discrete ran-
dom variables 𝑥 and 𝑦, MI takes the form:

𝑀𝑢𝑡𝑢𝑎𝑙 𝐼𝑛 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝(𝑥, 𝑦) ln
[

𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

]
(6)

We make use of the scikit-learn implementation, which uses a
nearest neighbour method instead of binning to handle cases where
the independent variable (feature), 𝑥, is continuous, assuming a dis-
crete target, 𝑦, (see Ross (2014)). Under the MI feature selection
protocol, the most performant features were identified in the same
way as for one-way ANOVA, resulting in slight variations in the op-
timal subset of features for each algorithm. In a similar fashion to
one-way ANOVA, MI aims to select features most crucial for class
distinction. However, MI quantifies the information shared between
features and the outcome, thereby unveiling non-linear, intricate re-
lationships. This feature reduction method was not employed for the
Decision Tree based algorithms for the same reasons as above, and
furthermore, MI is at the heart of the operation of these algorithms.

2.8 Class balancing

A difference in class frequencies affects the predictability of a model.
Differences in class prevalence cause algorithms to be biased towards
learning patterns more specific to the majority class, and produce
models that perform poorly in minority class predictions. To handle
the class imbalance present within the dataset (see Table 1) we tested
both a non-sampling method, class weighting (should the algorithm
permit such a strategy), and undersampling of the majority class
combined with the minority class over-sampling technique Adaptive
Synthetic (ADASYN; Haibo et al. 2008), a variation of Synthetic
Minority Over-sampling Technique (SMOTE Chawla et al. 2002).

2.8.1 Class weighting

Rather than augmenting the dataset, one may modify the algorithm
to account for skewed class distributions by giving different weights

to each class depending on their dataset prevalence. The difference
in weights influences the classification during the training phase.
The goal is to penalise the miss-classification of the minority class
by setting a higher class weight, while at the same time reducing
the majority class weight. Weightings are applied within the cost
function for each algorithm such that the miss-classification of a
minority class example (e.g., an AM CVn) leads to a greater cost
penalty than for a majority class example (e.g., an SU UMa).

2.8.2 ADASYN

SMOTE works by selecting a random example from the k nearest
neighbours in feature space of a randomly chosen example from the
minority class (or class of choice); draws a line in this feature space
between the examples and generates a new sample at a random point
along that line. The ADASYN adaptation generates more synthetic
examples in regions of feature space where the density of minority
examples is low, and fewer or none where the density is high. Subse-
quently, more synthetic data is generated for minority class samples
that are harder to learn compared to those where many examples are
available, making it easier to learn.

2.9 Missing Data

Missing data due to insufficient data points during the light curve
feature extraction process accounts for as much as 20% for a given
feature. Whilst that due to unavailability of metadata accounts for up
to 33%. Many machine learning algorithms do not support missing
values, therefore strategies must be implemented to address this ab-
sence of data. The most common and simplest strategy is to replace
(or impute) missing values with the mean or median of the feature,
however, this method ignores relationships between features and re-
duces the variance of the variable, thereby introducing bias to the
model. The following aims to mitigate such bias.

Adopted here is a two step approach, firstly the reasons for miss-
ingness is assessed, and we assign either an appropriate value, such
as that for the other filter, a value based on an immediately relevant
feature, or the value for that feature is left as missing. The final step
is to utilise the scikit-learn implementation of the K Nearest Neigh-
bour imputation method (Troyanskaya et al. 2001). For each sample,
each missing feature is imputed using the values from the k nearest
(based upon some distance metric, typically euclidean) neighbours
in feature space where that feature value is present. The imputed
value will be either the uniform or weighted-by-distance average fea-
ture value for those neighbours. We implement this method using
the weighted-by-euclidean distance average for imputation with the
default five nearest neighbours.

2.10 Machine Learning algorithms

The algorithms whose performance we evaluate are scikit-learn’s
(Pedregosa et al. 2011) Python implementations of Random Forest
(RF) (Breiman 2001), K-Nearest neighbours (KNN) (Zhang 2016),
Gaussian Naive Bayes (Zhang 2004), and Linear Discriminant Anal-
ysis (LDA; Hastie et al. 2001). Also used are the Extreme Gradient
Boosting (XGBoost) algorithm (Chen & Guestrin 2016) and Keras
(Chollet et al. 2015) implementation of an Artificial Neural Network
(ANN) in the form of a Multi-Layer Perceptron - a fully connected
multi-layer ANN (Kruse et al. 2022). Furthermore, for model eval-
uation and interpretability purposes we used Gaspar (2018) python
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implementation of Generative Topographic Mapping (Bishop et al.
1998).

The array of algorithms embody a diverse spectrum of classifica-
tion strategies chosen to extract optimal insights from the dataset.
RF is adept at navigating intricate patterns in data through its abil-
ity to handle non-linear relationships, high-dimensional data, and
noisy features. XGBoost is known for delivering high-performance
scalability, often surpassing other algorithms and underscoring the
potential of ensemble methods. KNN adds instance-based learning
to the mix, Naive Bayes adds probabilistic modeling, and LDA is
adept at discerning linear separability. Meanwhile, the multi-layer
perceptron, is a fundamental deep learning architecture, these are
capable of capturing intricate patterns in data.

2.10.1 Decision Tree based ensemble methods

RF and XGBoost are built with an ensemble of Decision Trees (DT;
Rokach & Maimon 2008) combined either non-sequentially or se-
quentially, respectively. With the provided features, DTs employ a
series of binary splits on the training dataset, starting from the root
node. These splits aim to create groups (referred to as leaf nodes) that
maximise dissimilarity while moving closer to a uniformity of class
within each group. The resulting model utilises this hierarchical tree
structure to make predictions on unseen instances.

RF operates by employing a voting mechanism, using predictions
generated by a randomly selected set of DTs. The class with the high-
est number of votes becomes the prediction of our model. Using the
bootstrap aggregation technique, each tree is trained on a modified
variant of the original training set. Additionally, a random subset of
features is used during this process to ensure the trees remain uncor-
related. Several crucial hyperparameters come into play. Increasing
the number of trees enhances the model’s ability to generalise, albeit
at the expense of added complexity and computational time. Adjust-
ing the maximum tree depth, which dictates the furthest distance
from the root to a leaf node, and altering the maximum number of
features available to each tree serve to control against overfitting.

XGBoost employs a boosting approach that makes predictions for n
rounds on the training sample, iteratively improving its performance
with each round by utilising information from the prior round’s pre-
diction accuracy. Specifically, its goal is to minimise a loss function
by iteratively selecting a tree that points towards the negative gradi-
ent of the said function. XGBoost utilises parallelised tree building
and hardware optimisation to improve runtime, and regularisation to
reduce overfitting. Hyperparameters include those mentioned for RF
with the addition of parameters such as the learning rate that controls
the loss function step size at each iteration, and the regularisation
rate to adjust model generalisation.

2.10.2 K Nearest Neighbours

KNN (Zhang 2016) stores the feature-space position vectors of train-
ing set examples. When making class predictions for new examples,
it identifies the mode of the classes among the k nearest neighbors
from the training set, assigning that mode as the prediction for the
new example. The hyperparameters that impart the greatest influ-
ence on model performance are the number of nearest neighbours,
the distance metric for similarity computation, and the weighting of
individual examples. The algorithm was implemented and evaluated
using the complete set of features, as well as with subsets of features
determined by the feature selection methods detailed in Section 2.7.

2.10.3 Artificial Neural Networks

Artificial Neural Networks (ANN) (LeCun et al. 2015), comprise in-
terconnected layers of nodes, commonly referred to as neurons. This
architecture consists of an input layer that receives feature values,
an output layer responsible for generating predictions, such as class
probabilities, and one or more hidden layers in between. The hidden
layers sequentially transform the initial feature values into predictions
by applying non-linear functions to linear combinations of previous
inputs. The learning process revolves around minimising a loss func-
tion, where adjustments to the model parameters are made through an
iterative process known as backpropagation until convergence to loss
minimum is achieved. ANN implementation and evaluation follows
the same feature selection methodology as for KNN, albeit exclud-
ing FFS due to its impracticality and computational expense when
applied to ANN.

2.10.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a dimensionality reduction
technique also used for classification purposes. Class predictions are
obtained by finding the class that maximises the posterior probability
from Bayes’ rule. Class distributions are modelled as multi-variate
Gaussians assumed to have the same covariance for each class. This
assumption reduces the log of the posterior probabilities to linear
functions, which leads to a further assumption, linear separability,
since locations where the functions are equal define linear class
decision boundaries. LDA is evaluated with both the full feature set
and the subsets of features determined by the methods of Section 2.7.

2.10.5 Gaussian Naive Bayes

As with LDA, the Gaussian Naive Bayes (GNB) classifier is based on
Bayes’ theorem, though unlike LDA, a naive assumption is made; the
features are independent, that is the presence of one feature has no
effect on others. The class y that gives the maximum posterior prob-
ability is assigned to a given example. The Gaussian arises because
the predictors take on continuous values, and are considered to be
sampled from a Gaussian distribution. The features utilised in GNB
follow the same methodology used for feature selection as applied to
KNN and LDA.

2.10.6 Generative Topographic Mapping

GTM is a neural network based manifold learning algorithm that
is able to compute a mapping between points in low dimensional
(often 2D) latent space into a higher dimensional data space (Bishop
et al. 1998). This is performed such that the structure of the latter
is represented in the former, in other words, points close together in
latent space will map to points close together in data space. Points
in latent space are arranged in an equally spaced grid of nodes.
GTM performs a non-linear mapping between those points and points
in data space using a linear combination of radial basis functions
with weighting coefficients. These points in data space represent the
centres of Gaussian probability density functions that make up a
mixture of Gaussians. During training, the weights and variances are
adjusted using the Expectation Maximisation algorithm such that the
overall probability distribution of data space is accurately represented
by the Gaussian mixture. The Gaussian centres will converge to the
mean or median locations of local structures (clusters) in data space.
It is with this overall probability density function defined by the
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mixture that examples can be mapped to locations in latent space
based on the responsibilities of Gaussians in the mixture.

One may utilise GTM to evaluate the ability of a classifier to distin-
guish between classes, and to identify the features responsible for the
assignment of a given class rather than an overall feature importance
list that only provides the features responsible for overall model per-
formance. To do this we input the posterior class probabilities for the
training set output by our classifier into the GTM framework. There-
fore the data space is a class probability space of nine dimensions.
Each example from the training set will have posterior probabilities
of belonging to each class evaluated by the classifier, these probabil-
ities define their location in class probability space. Distinct clusters
of these examples located in regions with high probability along a
particular probability space dimension would represent a classifier
that can accurately distinguish between classes. Since these clusters
define the Gaussian centres, they are mapped to the corresponding
nodes in latent space. We can then evaluate this class separability
within the latent space representation. This representation forms a
grid of squares, each defining a node, colour-coded based on the
location of the associated probability space Gaussian centre along a
given probability space axis (or particular class probability).

For feature responsibilities we simply average a particular feature
value for all examples assigned to a given node, assigned meaning
the node with the highest likelihood of being responsible for a given
example. The average for each node can then be used to produce a 2D
histogram consisting of the same above latent space grid with squares
colour coded by these averages, one for each feature. The distribution
of mean feature values can be analysed against the distribution of
classes in the class maps to identify class specific features.

2.11 Performance Metrics

Performance metrics rely on the counts of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). To
compute these counts, one must establish the positive class, repre-
senting the class of interest (e.g., one of the CV classes), and the
negative class, encompassing all other classes in this multi-class
scenario.

Frequently, the counts of TP, TN, FP, and FN are organised in an
N × N table referred to as a confusion matrix, with N signifying the
number of classes. This matrix provides a straightforward means to
view the quantities of TPs, TNs, FPs, and FNs. These values are used
to calculate the class-specific precision, recall, and F1-score, as well
as the balanced accuracy and Area under the Curve of the Receiver
Operating Characteristic.

The precision defines the proportion of instances our model pre-
dicts as belonging to the positive class, and actually, do belong to
this class: 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). It offers insights into the reliability of
our model’s predictions. Recall, on the other hand, measures the
fraction of positive class instances correctly predicted by our model:
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). This metric assesses the model’s capacity to iden-
tify all members of the positive class. The F1-score represents the
harmonic mean of precision and recall for the class of interest. It
is useful in finding the best trade-off between these quantities. A
perfect F1-score is 1 (100%), indicating both perfect precision and
recall, while the lowest possible value is 0, suggesting a score of
0 for either precision or recall. Balanced accuracy, unlike the basic
accuracy metric (which is the ratio of the sum of true positives for
each class to the total number of examples), calculates the arithmetic
mean of recalls for each class. This is particularly useful when deal-
ing with class imbalances, where the basic accuracy metric may not
accurately reflect model performance.

The Receiver Operating Characteristic (ROC) curve offers a visual
representation of the trade-off between sample purity and complete-
ness. It plots the True Positive Rate (TPR), also known as recall,
against the False Positive Rate (FPR). The FPR represents the frac-
tion of examples incorrectly classified as belonging to the positive
class, calculated as 𝐹𝑃/(𝑇𝑁 +𝐹𝑃). This curve is generated by vary-
ing the threshold probability used to determine positive classifica-
tions for each example. In detail, ML algorithms provide a class
probability score for each example, and a threshold is applied to
classify examples as positive or negative. The ROC curve showcases
the performance of the TPR and FPR as this probability threshold is
continuously adjusted. This tool is valuable for selecting an appro-
priate threshold that aligns with the desired balance between purity
and completeness, depending on the specific research objectives. In
classification tasks, the goal is to maximise TPR while minimising
FPR. An area under the curve (AUC) value of 1 indicates a perfect
model that correctly assigns class predictions for all examples. An
AUC of 0.5 signifies a model no better than random guessing, while
an AUC of 0 implies incorrect predictions for all examples. Although
ROC curves are typically associated with binary classification, in this
case of multi-class models, they are generated using a one-versus-
rest approach. This entails designating one class as the positive class
and the remaining classes as the negative class to produce separate
curves for each class.

While such performance metrics can be used to assess test set
performance differences between classifiers, the McNemar’s test can
be utilised to judge statistically significant differences between the
test set predictions of any two classifiers. The null hypothesis states
that the classifiers disagree in their class predictions to the same
amount. Should this be rejected, the alternative hypothesis implies
there is evidence they disagree in different ways. The test statistic is
calculated in the following way:

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝑌𝑒𝑠/𝑁𝑜 − 𝑁𝑜/𝑌𝑒𝑠)2

𝑌𝑒𝑠/𝑁𝑜 + 𝑁𝑜/𝑌𝑒𝑠 (7)

where 𝑌𝑒𝑠/𝑁𝑜 is the number of test instances that classifier 1 got
correct and classifier 2 got incorrect, while 𝑁𝑜/𝑌𝑒𝑠 describes the
opposite of this. The test statistic follows a chi-squared distribution
with one degree of freedom. The test is usually administered in a
binary classification setting, however, under the multi-class case, the
correct and incorrect classifications are performed for each class.

3 RESULTS

3.1 Classifiers

In our study, to distinguish between the nine CV classes, we evalu-
ated several algorithms: Gaussian Naive Bayes, Linear Discriminant
Analysis, K-Nearest Neighbors, Random Forest, XGBoost, and a
multi-layer perceptron neural network. To address class imbalance,
we used either the class weighting method (where possible) or the
ADASYN oversampling technique in combination with random un-
dersampling to balance the training set. Training was conducted on
subsets of features determined through the mutual information score,
variance inflation factor, the one-way ANOVA method, or forward
feature selection. We assessed the resultant models based on overall
accuracy, macro averages of precision, recall (equivalent to balanced
accuracy for the macro average), and F1-score. These are provided
in the heatmap shown in Figure 3 within the first four columns.
The corresponding precision, recall, and F1-scores for each class are
provided in the remaining columns.
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Table 5. Top 5 ranked classifiers based on the macro-averaged F1-score.
Listed are the algorithm, the method used to handle class imbalance and the
method used to reduce the number of features. The class balancing meth-
ods are abbreviated as SMPL, WTD, or -, depending on whether over/under
sampling methods, class weighting, or no class balancing method was im-
plemented, respectively. The only feature selection methods in this list are
those abbreviated as MUI or -, for mutual information or no feature selection
method (full list of features used), respectively.

Rank Algorithm Imbalance Feature selection F1-score

1 XGB — — 0.62
2 RF SMPL — 0.58
3 XGB SMPL — 0.57
4 NN WTD MUI 0.57
5 LDA — — 0.57

To compare the test set performance metric means of different
classifier groups, we conducted T-tests. The results indicate that
GNB and KNN-based classifiers performed poorly on the test set
compared to the other algorithms (F1-score of 0.44 ± 0.04 and
0.54 ± 0.04, respectively, with a p-value of 𝑝 = 8.6 × 10−11 at
𝛼 = 0.05). However, there was no significant performance difference
when using over/under sampling compared to class weighting (or no
such method) (𝑝 = 0.07−0.86 for all metrics). Regarding feature re-
duction methods, we observed small but not significant performance
improvements when using the one-way ANOVA and mutual informa-
tion, while the use of variance inflation factor led to a performance
drop.

The class-specific performance associated with each model re-
vealed difficulties in correctly classifying the AM CVn and interme-
diate polar classes, irrespective of the algorithm used or any effort
to address class imbalance. These two classes, along with the nova
class, have the lowest sample size. Despite the small sample size, the
light curves (and metadata) of the novae are sufficiently distinct for
the algorithms (especially NN, RF, and XGBoost) to distinguish them
from the remaining classes. All models, except for GNB, performed
well in classifying the SU UMa class.

To select the model for the pipeline, we based our decision on the
macro F1-score with some consideration for the performance on the
lowest sample size classes. Table 5 presents the top 5 models based
on the macro F1-score, while Figure 4 shows the class-specific ’p-
value table’ resulting from a McNemar’s test for each pair of these
models. The figure indicates no significant prediction disagreements
between these algorithms for the SU UMa, nova, and intermediate
polar classes. However, models ranked in the top 3 show significant
prediction disagreements compared to models ranked 4 and 5 with
regards to Z Cam. For the AM CVn class, the XGBoost classifier,
implemented without explicit class balancing or feature reduction,
significantly outperformed the other models. As a result, we selected
this XGBoost model trained with 500 decision trees at a maximum
tree depth of 14, as the classifier for the second stage of our pipeline.

We should note that certain aspects of the model selection, such as
the variation of examples apportioned to the training, validation, and
test sets, the NN weights initialisation, and the feature selection for
each tree of the RF and XGB models, were randomly selected. Thus,
different random initialisations could have led to the selection of any
of the models generated from the NN, RF, and XGB algorithms.

Table 6. Classification report for the XGBoost model. For each class of
CV the precision, recall, F1 score, and the number of test set examples are
given. The macro average (or arithmetic mean) of each metric, accuracy and
balanced accuracy are also provided.

Class Precision Recall F1 score Test set amount

AM CVn 1.00 0.36 0.53 14
SU UMa 0.81 0.90 0.85 189
U Gem 0.66 0.60 0.63 35
Z Cam 0.73 0.69 0.71 52
Intermediate Polar 0.50 0.07 0.12 15
Nova 0.64 0.50 0.56 14
Nova-like 0.67 0.77 0.72 43
Nova-like VY Scl 0.76 0.78 0.77 36
Polar 0.71 0.74 0.72 34

Macro average 0.72 0.60 0.62 432
Accuracy 0.76 432
Balanced accuracy 0.60 432

3.2 Performance

The per class performance of the model as implemented on the
test set is described in Table 6, while the corresponding confusion
matrix is shown in Figure 5. Evident are the following. SU UMa is
responsible for the highest precision and recall scores, contributing
greatly towards an increase in the overall classification performance,
Z Cam and VY Scl are also well picked out by our classifier. The
overall performance suffers noticeably due to the performance of the
intermediate polar class. Intermediate polars represent a class subject
to one of the largest amount of training set oversampling, due to a
low number of examples.

Also falling within this high oversampling bracket are the AM
CVns and novae. Despite this, they are responsible for strong preci-
sion scores such that 100% of examples predicted as AM CVn and
64% of examples predicted as nova are true members of the class.
However, this does comes at the expense of lower recall scores, 0.36
for AM CVns and 0.50 for novae. Those true AM CVn members that
are missclassified are mostly assigned the SU UMa class, as are true
members of the nova class.

The classifier performs well in distinguishing between systems that
regularly display dwarf nova outbursts (where we exclude intermedi-
ate polars) from those that do not. Should we group those classes into
those that exhibit these outbursts and those that do not, the precision
and recall scores for the dwarf nova exhibiting class would be 0.92
and 0.94 respectively, while for non-dwarf nova exhibiting systems,
0.88 and 0.83. Confusion between dwarf nova exhibiting systems is
an area where the model performance suffers. Notable is the misla-
belling of AM CVn members as SU UMa; and the contamination
of predictions of the U Gem class by SU UMa and Z Cam mem-
bers. Similarly confusion between non-dwarf nova exhibiting system
also plays a factor: true intermediate polar members are confused for
nova-likes, VY Scl and polars; and confusion between the nova-like,
VY Scl and polar classes is present. Reverting our description of
performance back to our 9 class problem, notable is the significant
missclassification of true Z Cam members with the nova-like class
and the significant contribution of false positive by the SU UMa class
towards the predictions of the the nova class.

With respect to the ROC Curves Figure 6, in all cases the classifier
performed much better than a random guess, depicted by the ’chance
level’ line. An AUC score above 0.93 for all but the intermediate polar
and AM CVn classes represents a strongly performing classifier,
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Figure 3. Presented as a heatmap are, the accuracy, and the macro average quantities of precision, recall, and F1-score for each classifier variant. Alongside
these are the precision, recall, and F1-score for each class. Classifiers are labelled as follows: classifier + class balancing method + feature selection method.
Classifier abbreviations are as described in the text, the class balancing methods are abbreviated as SMPL, WTD, or —, depending on whether over/under
sampling methods, class weighting, or no class balancing method was implemented, respectively. Feature selection methods are abbreviated as ANO, FFS, MUI,
VIF, or —, for one-way ANOVA, forward feature selection, mutual information, variance inflation factor, or no such implementation (full set of features used),
respectively.
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Figure 4. The per-class p-values from McNemar’s tests conducted between each pair of the top 5 ranked classifiers from Table 5. For ease of reference these
are, from rank 1 to 5, XGB + — + —, RF + SMPL + —, XGB + SMPL + —, NN + WTD + MUI, AND LDA + — + —. The significance threshold is set to
p=0.05, the classifier descriptions and abbreviations are as described in the caption of Figure 3.

where the resultant micro and macro averages are 0.96 and 0.92.
This is a further illustration of the findings within the confusion
matrix and classification report.

The importance of each feature for DT-based models can be
given by the feature importance scores. The 20 features with the
largest effect on the model’s predictive accuracy are plotted in Fig-
ure 7. Ranked highest is the Gaia RP band absolute magnitude
(abs_mag_rp); Gaia BP and G absolute magnitudes also feature
within the list. ZTF and Gaia colours feature strongly, with the bright-
est epochal colour (clr_bright), Gaia G-RP and Gaia BP-RP colours
within the top 10. The slope of a linear fit to the ZTF r band light
curve is deemed highly relevant for classifier performance, as is the
auto-correlation length in the ZTF g band. Periodicity based fea-
tures within the list come in the form of the frequency of maximum

power in the Lomb Scargle periodogram of the r band light curve.
Features for identifying outbursts are represented by the number of
points brighter than the rolling median. Features that test for the syn-
chronous light curve variability across both bands come in the form
of StetsonJ and StetsonL (see Table 2). The list therefore contains a
mixture of features that cover periodicity, photometry, and statistical
descriptors.

3.3 GTM Latent space representations

Class maps generated using GTM, as described in subsection 2.10.6,
are presented in Figure 8. These latent space representations of class
probability space structures assess the class separability of our ML
model. The class maps clearly show the existence of structures that
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Figure 5. Confusion matrix for the XGBoost model.

are located in fairly distinct regions, each associated with a partic-
ular class. This is representative of a classifier that has effectively
learnt patterns within the data necessary for class distinction. These
structures are extended, with their cores represented by the highest
probability of belonging to the associated class, whilst as we move
away from the cores, the probabilities diminish (represented by the
colour scale). Structures extend into regions associated with that of
other classes, indicating some class confusion, thus reflecting obser-
vations within the confusion matrix. The highest class probabilities
are associated with the SU UMa, U Gem, Z Cam, nova-like, and
VY Scl classes - their structure cores exceed 0.80 in class prediction
probability. Structures for the AM CVn, nova and polar classes are
also present, though with class probabilities no higher than 0.7 and
0.8 respectively. As mirrored in the confusion matrix, the interme-
diate polar structure, though located in a relatively distinct region, is
only responsible for a core class probability of 0.62.

Another interesting feature of the maps are that outbursting sys-

tems tend to reside along the top edge and down the left edge, while
systems that are not expected to display dwarf nova outbursts are
located along the right and bottom edges of the maps. This concurs
with our the observation of the effectiveness of our model to distin-
guish outbursting from non-outbursting systems. The nova class is
the only one located away from any edge.

The most obvious blending between structures (or equivalently,
confusion between classes) is evident for the SU UMa class - the
most prevalent class in the dataset. Its structure extends well into the
AM CVn and U Gem regions, also coming into contact with Z Cam
and nova. Z Cam is responsible for a well defined structure (top right)
that extends into nova-like class probability space, and a tenuous one
(∼0.2 in Z Cam class probability) that is more strongly associated
with the nova-like, VY Scl and intermediate polar classes. Nova-likes
are also responsible for a tenuous, secondary structure (bottom right)
more strongly associated with intermediate polars. There is also clear
overlap between nova-like, VY Scl and intermediate polar classes,

MNRAS 000, 1–27 (2015)



ML for ZTF CV Discovery 17

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Receiver Operating Characteristic (ROC) curves 

One-vs-Rest multiclass

micro-average (AUC = 0.96)
macro-average (AUC = 0.92)
AMCVn (AUC = 0.90)
dwarf_nova_SU_UMa (AUC = 0.95)
dwarf_nova_U_Gem (AUC = 0.94)
dwarf_nova_Z_Cam (AUC = 0.95)
int_polar (AUC = 0.76)
nova (AUC = 0.91)
nova_like (AUC = 0.95)
nova_like_VY_Scl (AUC = 0.97)
polar (AUC = 0.97)
Chance level (AUC = 0.5)

Figure 6. Receiver operating characteristics for the XGBoost classifier.

and structure blending in evident between AM CVn, nova, and polar
classes.

In Figures 9 and 10 are a selection of feature maps for features
derived from the g and r band light curves. Several further feature
maps are shown in Figure 11 representing features derived from a
combination of the g and r band light curves and from Gaia DR3.
They represent the average feature values of examples assigned to
each of the latent space nodes. The feature maps can be used as
tools to identify the features most responsible for the assignment of

a given class. This is done by comparing class map structures with
those within the feature maps. While examination of the feature maps
is reserved for the discussion section, it is clear that structures and
patterns exists within them that coincide with class map structures.
For example, high values for amplitude and variability based features
(e.g., Amplitude, Std, MedianAbsDev, and npeaks) correspond to
outbursting systems; the fewest number of data points, n_obs, are
associated with AM CVn, SU UMa and nova classes; and the bluest
colours are associated with the AM CVn class.
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Figure 7. Feature importance scores for the 20 most influential features within the chosen classifier model. Feature importance refers to a class of techniques for
assigning scores to input features to a predictive model, indicating the relative importance of each feature when making a prediction.

3.4 Alert stream pipeline

With the aim of the alerts filter to minimise the number of possi-
ble non-CVs and maximise potential CVs, this was best achieved
with the following procedure. The Sherlock contextual classifier was
utilised to remove sources within the synonym radius (1.5") of a
catalogued active galactic nucleus or nuclear transient. Inspection of
light curves of alerting sources (within a 30 day period) removed un-
der these conditions revealed no elimination of known or candidate
CVs. To filter out supernova candidates, those sources classified as
SN by Sherlock are removed should they meet the following criteria:
the closest matching source from the PanSTARRS catalogue (used
as the reference source) should have a Star/Galaxy score of less than
0.4 (values range from 0 to 1, where closer to 1 implies a higher
likelihood of being a star); and an angular separation from the asso-
ciated galaxy centre less than the galaxy’s semi-major axis size (in
arcseconds). Furthermore any source with a Transient Name Server
name prefix with ’SN’ was also removed. Of the sources remaining
with a contextual classification of ’SN’,∼ 60% displayed outbursting
characteristics where quiescent stages were below the detection limit
(likely dwarf novae). The remaining percentage were a mixture of
faint sources with no star/galaxy score, several Mira variables, and a
classified nova. For removal of variable stars, a simple cross-match
with the AAVSO VSX list of Mira variables, Cepheids, RR Lyrae
stars (amongst other classes under the variable star umbrella) was
performed. Few, if any, of those removed with this variable star filter-
ing method belonged to a member of the confirmed or suspected CV

family. With respect to the 𝛿𝑚 criteria, no such filtering is performed
in an effort to maximise the number of CVs. It was found that sources
with the least amount of variability are assigned the nova-like class,
thus a motivating factor in this choice.

Constraining the number of alerts based on several g-r colour met-
rics, and not just the overall mean, had the desired effect of retaining
dwarf nova exhibiting sources. These are outside the epochal or over-
all mean colour threshold of <= 0.7 during quiescence, but within the
threshold during outburst by virtue of the colour measured at their
brightest epoch (clr_bright). An approximate quantitative estimate
of the effectiveness of this strategy can be given for a month’s worth
of alerts. For June 2023, 12 confirmed or strong candidate dwarf
novae were outside of this threshold based on the mean epochal or
overall colour, whereas with the inclusion of the clr_bright quantity
only 1 fell outside the threshold.

An additional criteria requiring at least four data points on either
the g or r band light curve was also imposed, allowing the majority of
features to be derived. Combining all the above criteria, the number
of sources returned per night for input into the ML classifier can be
as few as 50, while on other nights over 200 may be available. Dur-
ing June 2023, the filtering output 1283 sources, of which ∼ 8% are
contained within the Downes Catalog of CVs (Downes et al. 2001)
and/or the Ritter Cataclysmic Binaries Catalog v7.24 (Ritter & Kolb
2003). Approximately 45% are contained within the AAVSO VSX
CV compilation of confirmed or candidate CVs (this includes the
Ritter and Downes catalogues). The remainder, those not contained
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Figure 8. GTM latent space visualisation of the class posterior probability space from the XGBoost classifier chosen for the pipeline.

within AAVSO, comprise of: low amplitude slowly varying (month
to year long timescales) sources (∼ 30% of the total), a small fraction
of which are eclipsing binaries; sources with similar variability to
VY Scl and magnetic CVs (∼ 3 and 4% of the total, respectively);
outbursting candidates (∼ 8% of the total); and a combination of
sources that have once briefly risen above the limiting magnitude
(possible supernovae), and those with too few data points for infer-
ence. Further inspection reveals that young stellar objects, candidate
AGN, and variable stars provide the majority of contamination. A

rough estimated of between 5 and 10% contamination from these
sources is found.

The output of the filter applied to the alerts for June 2023 were
fed into the XGBoost classifier with the following findings. The low
variability sources are overwhelmingly assigned the nova-like class,
while outbursting sources are assigned one of the dwarf nova classes
or the AM CVn label. Superoutbursting or candidate superoutburst-
ing systems are largely assigned the SU UMa label with a small
amount of mislabelling into the U Gem class. Signatures of Z Cam
variability are present within the list of sources assigned this class,
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Figure 9. GTM-generated feature maps for the XGBoost model. Compare
high and low-value regions to class maps to pinpoint key features for class
assignment. White squares indicate empty nodes, to which no examples are
assigned, determined by node responsibility (see Section 2.10.6).

while faint blue sources are generally assigned the AM CVn class.
As one enters the low sampling regime (fewer than 20 data points)
class confusion is evident, though not where outbursting activity is
clearly present.

From the June 2023 alerts filter output, we have compiled Table
7. This is a list of candidate CVs we identified that, at the time of
writing, are not present in either the Ritter or Downes catalogues, the

Figure 10. Feature maps for the XGBoost model produced using GTM. Same
as for figure 9 though for r band

list of CVs within AAVSO VSX, or within literature as far as we are
aware. The prediction of class output by our classifier (along with the
class probability) for these candidates is provided. Furthermore, we
assign a score based on the strength of their candidacy as members of
the CV class. A score of 1 represents a light curve sufficiently sam-
pled for the identification of distinguishing characteristics. Should
less well sampled signatures of defining characteristics be present,
for example, outbursts not sampled during quiescence, a score of
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Figure 11. Feature maps for the XGBoost model produced using GTM. Same
as for figures 9 and 10 though for Gaia and colour related features

2 is given. A score of 3 is given to the examples where only faint
signatures are present, possibly due to poor sampling.

4 DISCUSSION

4.1 Classifier performance

The characteristics of the confusion matrix and the blending of class
specific structures into one another can be explained in the context
of the physical properties of CVs, their evolution, and the properties
of their light curves.

4.1.1 Class proportions

A list of thousands of cataclysmic variables accurately labelled into
their subtypes based on multi-wavelength photometry with sufficient
sampling and spectroscopy for each source is not currently available.
While over 15,300 sources have been assigned the CV class according
to the AAVSO and BTS, those with ZTF counterparts represented
just over 5700 (as of March 2023 when the dataset was constructed).
A significant proportion of these belong to the dwarf nova class
(∼ 89%) of which only 19% possess labels with the dwarf nova
subclass information we required. We were therefore limited to a list
of 1439 sources with highly imbalanced class proportions.

Whilst efforts are made to account for this imbalance, the classes
lowest in sample size (AM CVn, intermediate polar, and nova) are
the weakest performers. Comparisons of light curves associated with
each of these classes with remaining classes provide a possible reason
for their missclassifications. The Intermediate polar ZTF17aabhicw
(see Figure 1) displays long term variability (weeks to months) as
seen in polars, nova-likes and VY Scl (e.g., ZTF18abryuah and
ZTF18abmrryp), while ZTF17aabglmw displays occasional dwarf

nova outbursts. AM CVns display regular and super outbursts (e.g.,
ZTF18aaawjmk) and may be faint enough to only be visible during
outburst (e.g., ZTF18adkhuxp), overlapping with SU UMa character-
istics; longer term changes associated with changed in mass transfer
rate (e.g., ZTF18aaabbbv) may also be present. A nova eruption de-
cline (e.g., ZTF19aabjxpe) could be confused with SU UMa systems
with long supercycles.

Despite these issues, the ROC curves and class maps represent
a classifier with strong predictive capacity, even for the AM CVn
and nova classes. This may be a consequence of features relevant
to colour, parallax and proper motion. Nova systems in our sample
possess redder colours, while AM CVns typically lie at the blue
end of the colour scale. AM CVns are intrinsically faint, thereby
are required to be closer than most other CVs to be detectable and
induce high values of parallax and, where tangential motion occurs,
observable proper motion.

4.1.2 Dwarf nova classes

Distinguishing between different classes of dwarf novae primarily
hinges on our features’ ability to detect the presence of superout-
bursts in SU UMa and standstills in Z Cam systems. In a study
conducted by Otulakowska-Hypka et al. (2016), an in-depth analy-
sis was undertaken to examine the characteristics of superoutbursts
and normal outbursts in dwarf nova systems. The research revealed
that Z Cam outbursts typically exhibit a noticeably lower amplitude
range, spanning approximately 1-4 magnitudes, compared to the su-
peroutbursts and normal outbursts observed in SU UMa systems,
which range from 1-9 and 1-8 magnitudes, respectively. The upper
limit for U Gem outbursts falls between these two extremes, with
a range of 1-6 magnitudes. Consequently, one would anticipate sig-
nificantly higher values for amplitude related features for SU UMa
compared to the Z Cam systems. Indeed, when examining the g and
r band feature maps in Figures 9 and 10 for amplitude, the difference
between the minimum (brightest) and mean or median magnitudes
(dif_min_mean and dif_min_median), and the number of peaks with
amplitudes exceeding 5 magnitudes (npeaks_above5), the highest
values are consistently found within the region of GTM latent space
occupied by SU UMa systems (see Figure 8 class maps). As we shift
our focus from the SU UMa region in these class maps to U Gem and
then to the Z Cam region, the feature values for the corresponding
locations in the feature maps progressively diminish. Our confusion
matrix (Figure 5), along with those class maps, corroborate with
the notion that the most pronounced distinction among dwarf nova
subtypes lies between SU UMa and Z Cam.

The semi-regular outbursts in dwarf nova systems exhibit a quasi-
periodic pattern when adequately sampled. In ZTF light curves, it
is notable that superoutbursts, especially long-lasting ones, tend to
receive more comprehensive sampling compared to normal outbursts
(refer to Figure 1). Consequently, the strength or amplitude of signals
detected in the Lomb Scargle periodogram can serve as an effective
discriminator for distinguishing SU UMa systems from U Gem and
Z Cam. Notably, the feature maps within Figures 9 and 10 illustrate
that the amplitude values corresponding to detected frequencies and
their harmonics (referred to as Freqi_harmonics_amplitude_j; see
Table 2) are consistently higher in regions associated with SU UMa
systems than in U Gem and Z Cam associated regions (refer to Figure
8 class maps). The peak values of these features are most prominent
in regions adjacent to those associated with the AM CVn and nova
classes, possibly due to instances where the observational timeline
exclusively captures a brightening event, such as a nova eruption or
superoutburst.
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Table 7. New CV candidates identified by our pipeline. Given are the: ZTF object ID; equatorial coordinates at the J2000 epoch; number of suspected dwarf nova
outbursts, where (SO) is appended for possible superoutbursts amongst them; g band magnitude range, or r band (appended with r) should insufficient g band
data exist (> is prepended should no quiescence brightness be present); light curve duration in days; Gaia BP-RP colour; mean ZTF g-r colour and in brackets
the colour at peak brightness, calculated in the manner of the clr_mean and clr_bright features explained in Table 3; prediction of our classifier; posterior class
probability output by our classifier; and the strength of CV candidacy, rated as 1 for the strongest, 3 for the weakest candidates. The table is ordered by class
prediction then probability.

ZTF ID R.A. Dec. Outb Δ𝑚 Dur BP-RP g-r Clf pred Prob CV Rating

ZTF19aauxfaw 15:27:39.96 -19:48:46.17 4 > 17.9-19.1 1475 - -0.34 (-0.17) AM CVn 0.70 3
ZTF21aawqeix 18:49:31.03 -17:43:54.13 4 > 18.2-19.0 810 - -0.02 (-0.08) AM CVn 0.38 2
ZTF18ablpcfv 19:09:21.11 -20:01:03.13 6-8 > 17.5-18.7 1521 -0.60 0.03 (-0.08) AM CVn 0.37 3
ZTF23aamdode 17:08:45.64 +08:54:51.69 1 > 17.4-20.5 44 - -0.24 (-0.62) AM CVn 0.35 3
ZTF19abdmfpn 17:58:04.69 +05:28:15.54 2 > 18.9-19.4 700 - -0.44 (-0.27) AM CVn 0.33 3
ZTF19aalcaĳ 18:01:43.65 +23:21:11.17 4-6 > 18.9-20.6 1409 - -0.10 (-0.08) AM CVn 0.31 2
ZTF19acbwtgi 22:25:56.91 +39:26:48.97 3 > 19.3-19.7 1375 - -0.24 (-0.11) AM CVn 0.30 3
ZTF18abcysck 19:03:59.30 +32:32:37.40 12 (SO) > 18.5-19.7 1822 - -0.33 (-0.31) AM CVn 0.28 2
ZTF19aadovsk 17:44:08.17 -03:50:46.88 5-7 (SO) > 18.5-19.3 1479 - -0.16 (-0.04) AM CVn 0.26 2
ZTF21acbqaqa 14:50:11.12 +65:59:42.19 - 18.9-20.7 654 - 0.30 (0.83) Polar 1.00 2
ZTF20abpwtmi 15:38:20.42 +79:32:26.05 - 18.5-20.6 1071 - 0.38 (0.67) Polar 0.96 2
ZTF18abcwxnq 18:43:26.49 +06:08:00.90 - 17.9-21.7 1153 1.86 0.27 (0.12) Polar 0.94 2
ZTF18abmrmlu 23:01:52.75 +39:50:13.96 - 18.7-22.2 1791 0.91 0.41 (-0.12) Polar 0.80 2
ZTF18abiklxf 20:46:40.96 +22:50:36.20 - 17.4-20.3 1816 1.46 0.22 (0.62) Polar 0.77 2
ZTF18abnjsqz 17:40:39.30 -00:51:46.68 2 > 17.5-19.1 547 - -0.04 (-0.01) SU UMa 0.98 2
ZTF18abqbbpq 17:55:15.36 +06:57:44.41 4 > 18.6-19.9 1501 - 0.22 (-0.05) SU UMa 0.98 3
ZTF19abtnbck 19:02:38.61 +26:52:44.76 3 > 18.8-19.7 1404 - 0.00 (0.00) SU UMa 0.98 2
ZTF19abdolkk 19:21:46.43 -27:54:53.91 2 > 17.8-19.0 1454 - -0.24 (-0.23) SU UMa 0.98 2
ZTF19aaprbry 19:41:32.53 -07:37:54.12 4 > 18.6-20.0 1350 - -0.05 (0.06) SU UMa 0.98 3
ZTF20acufmrl 02:51:10.20 +48:39:28.83 3 18.5-19.9 263 - -0.07 (-0.06) SU UMa 0.97 2
ZTF19abjbhmd 16:55:20.72 -18:21:58.77 5 > 18.7-19.1 1442 - -0.35 (-0.29) SU UMa 0.97 3
ZTF19aalcaĳ 18:01:43.65 +23:21:11.17 1 > 18.9-20.6 1409 - -0.10 (-0.08) SU UMa 0.97 3
ZTF19aaxcajp 21:44:37.10 +29:30:10.74 5 > 18.3-19.7 1499 - -0.11 (-0.02) SU UMa 0.97 2
ZTF19aailtzw 17:07:44.19 +02:56:53.04 3 > 18.2-19.6 802 0.10 -0.09 (0.02) SU UMa 0.94 2
ZTF18abcysck 19:03:59.30 +32:32:37.40 6 > 18.5-19.7 1822 - -0.33 (-0.31) SU UMa 0.93 2
ZTF21aaqwlgv 18:16:02.45 +03:07:11.79 3 > 18.3-19.5 819 - 0.05 (0.11) SU UMa 0.92 2
ZTF18abklywy 18:01:53.06 +04:07:22.51 6 > 18.6-19.9 1526 - 0.23 (0.08) SU UMa 0.91 2
ZTF19aadovsk 17:44:08.17 -03:50:46.88 3 > 18.5-19.3 1479 - -0.16 (-0.04) SU UMa 0.92 2
ZTF18aavtqlz 17:49:11.47 +23:58:27.57 5 > 19.2-20.3 1265 - -0.24 (0.07) SU UMa 0.85 3
ZTF18abthqde 19:39:04.33 +41:53:10.10 4 > 17.4-18.9 1760 - -0.21 (-0.23) SU UMa 0.83 2
ZTF20abylzfr 20:11:08.11 +84:05:19.21 2 > 17.1-19.7 1037 - -0.08 (-0.16) SU UMa 0.74 2
ZTF18absoqce 23:18:05.90 +55:58:51.90 6 > 17.9-19.4 1773 - 0.80 (0.39) SU UMa 0.69 2
ZTF18ablpcfv 19:09:21.11 -20:01:03.13 5 > 17.5-18.7 1521 -0.60 0.03 (-0.08) SU UMa 0.65 3
ZTF19ablvwcu 20:09:20.00 +00:22:28.56 5 > 17.7-18.5 1331 - 0.27 (0.19) SU UMa 0.63 2
ZTF18abjrekr 22:00:29.91 +50:08:47.44 5 > 18.1-19.7 1808 - 0.20 (0.09) SU UMa 0.62 2
ZTF18accpsgk 21:19:34.61 +38:00:12.90 10 > 17.2-18.0 1699 - -1.30 (-0.85) SU UMa 0.59 2
ZTF19ablujxj 20:36:53.40 +21:11:06.05 7 > 18.6-20.0 1438 - -0.03 (0.00) SU UMa 0.57 2
ZTF18abndsft 17:25:12.81 -20:40:48.85 4 17.7-21.2 1474 1.69 0.74 (0.53) SU UMa 0.45 2
ZTF18abzmujj 19:11:51.25 -05:49:30.43 6 > 18.7-19.6 1730 - 0.62 (0.41) U Gem 0.85 1
ZTF18abeajjd 17:03:58.75 +15:27:31.78 8 > 18.5-20.7 1823 - 0.13 (0.18) U Gem 0.78 1
ZTF19aawxrtk 18:08:13.30 +22:51:09.39 2 16.9-17.2 1323 - -1.73 (-1.42) U Gem 0.68 2
ZTF18abloyve 19:10:41.97 -26:46:57.55 4 > 16.9-17.9 1490 - 0.44 (0.20) U Gem 0.53 2
ZTF18aazeong 22:24:05.48 +51:11:42.41 10 17.3-19.3 1847 1.15 0.20 (0.11) U Gem 0.47 1
ZTF18abnwfvw 18:53:33.53 +22:35:59.41 3 > 16.5-19.9 1422 1.64 0.54 (0.39) Z Cam 0.45 2
ZTF18abuytrt 18:13:14.20 +01:49:02.04 > 9 18.2-20.8 1552 0.93 0.33 (0.40) Z Cam 0.35 2
ZTF19aarpwtt 19:54:34.93 +46:11:08.59 10-14 > 18.8-19.8 1485 - 0.20 (0.08) Z Cam 0.31 2
ZTF19ablujxj 20:36:53.40 +21:11:06.05 12 (SO) 18.6-20.0 1438 - -0.03 (0.00) Z Cam 0.31 2
ZTF18abthqde 19:39:04.33 +41:53:10.10 5 > 17.4-18.9 1760 - -0.21 (-0.23) Z Cam 0.30 1
ZTF21aaqwlgv 18:16:02.45 +03:07:11.79 3 > 18.3-19.5 819 - 0.05 (0.11) Z Cam 0.25 2
ZTF18abnjsqz 17:40:39.30 -00:51:46.68 3 > 17.5-19.1 547 - -0.04 (-0.01) Z Cam 0.22 2
ZTF19aadospr 16:53:37.97 +00:49:11.93 4 > 18.4-19.7 805 0.36 -0.04 (-0.07) Z Cam 0.21 3

Figures 9 and 10 reveal that skewness (Skew), standard deviation
(Std), and the standstill level (stdstilllev_t20s10), may be used to
distinguish Z Cams from other dwarf novae. Our analysis suggests
that standstills can significantly influence the magnitude distribution,
pushing it towards brighter values. Furthermore, if these standstills

persist for an extended period, ranging from weeks to months, they
can also reduce the standard deviation, aligning it more closely with
that observed in nova-like systems. While regions exhibiting low
standard deviation are not exclusive to Z Cam systems, as other
dwarf novae with extended periods of quiescence also display this
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characteristic, what sets Z Cams apart is the normalised brightness
within these low standard deviation regions. The standstill level fea-
ture aims to pinpoint these distinctive regions within the light curve,
effectively distinguishing Z Cam systems from their SU UMa and U
Gem counterparts.

When it comes to defining characteristics of U Gem systems, with
orbital periods greater than 3 hours, their more massive donor stars
and greater mass transfer rates result in accretion disks typically
larger than those of SU UMa systems, whose orbital periods mostly
lie below 2 hours. Consequently, for the equivalent orbital inclina-
tions U Gem systems have a higher optical quiescent brightness. The
combination of ZTF’s limiting magnitude and this brightness dispar-
ity results in many SU UMa systems only being detected during their
outburst phases as opposed to the U Gem class in which quiescence
sampling is more likely. This is evident when examining the number
of observations (n_obs) feature maps in Figures 9 and 10, where
higher values are present in the U Gem associated region compared
to that for SU UMa.

Expanding upon the topic of intrinsic brightness, sources with
lower intrinsic brightness would need to be closer for effective obser-
vation, leading to a higher parallax measurement (and possibly proper
motion depending on motion in the tangential plane). With the short-
est orbital periods of the dwarf nova classes, SU UMa systems are
expected to be less luminous, (given equivalent orbital inclinations)
for the reasons set out in the previous paragraph, and posses higher
parallax values (and proper motion) when compared to their dwarf
nova counterparts. These distinctions are indeed evident in the Figure
11 feature maps for parallax and pm, respectively. Moreover, these
arguments align with the observation of fainter absolute magnitudes
as well.

The high mass transfer rates characteristic of Z Cam systems drive
them to meet the disk instability threshold shortly after a previous out-
burst. Consequently, during their outburst phases, they tend to spend
considerably less time at the minimum brightness level in compar-
ison to other dwarf nova types, as documented by Simonsen et al.
(2014). This leads to recurrence periods typically falling within the
range of 10 to 30 days, exemplified by systems like ZTF17aaaeepz.
It is reasonable to anticipate that the outburst recurrence period, a
parameter that the Lomb Scargle periodogram’s maximum power
frequency (freq_pwr_max) aims to characterise, could offer some
level of discrimination between Z Cam systems and their dwarf nova
counterparts.

However, upon scrutinising the corresponding feature maps for
freq_pwr_max (within Figures 9 and 10), it becomes evident that dis-
tinguishing between these types is challenging. For potential insights
into this challenge, one may refer to the findings of Otulakowska-
Hypka et al. (2016). Notably, while the average recurrence periods
for the U Gem class tend to be longer than those of Z Cam systems,
in excess of 50 days, there is an overlapping range with Z Cam re-
currence periods. This overlap is also observed in the case of the SU
UMa class, where recurrence periods span from 3 to 300 days. Addi-
tionally, factors such as the presence of extended standstills in Z Cam
systems (e.g., ZTF17aabunpt; Figure 1) and the limited sampling of
normal outbursts contribute to the complexity of estimating this type
of periodicity.

An examination of light curves for systems that fall between the
latent space nodes associated with U Gem and Z Cam classes (see
Figure 8) further confirms this recurrence period overlap, as does
the overlap between the SU UMa and U Gem classes. Within this
continuum also lie the rapidly outbursting SU UMa subtypes, ER
UMa, underscoring the significance of recurrence period overlap as
a primary contributor to the confusion among dwarf nova subclasses.

4.1.3 AM CVn

For the remainder of Section 4.1, in order to facilitate our discussion
and interpretation of the class and feature maps, we may refer to
specific nodes (squares) by a simple coordinate system (x, y). The
value of x denotes the square number (1-10) from left to right, while
the value of y signifies the square number (1-10) from bottom to top.

As previously discussed in the introduction, AM CVn systems
tend to be bluer than their hydrogen-rich CV counterparts and are
generally of lower luminosity. While superoutbursts are observed in
AM CVn systems (Kato & Kojiguchi 2021), they tend to be of shorter
duration, typically lasting 5-6 days, and display lower amplitude (4-
6 magnitudes) in contrast to superoutbursts in SU UMa systems,
which often extend beyond 10 days and can, in the case of the WZ
Sge subclass of SU UMa, reach amplitudes exceeding 6 magnitudes.
Additionally, normal outbursts have also been observed in AM CVn
systems, occurring on the fading tail of superoutbursts (Duffy et al.
2021).

Upon scrutiny of feature maps, it becomes apparent that features
such as the mean, median, minimum, and maximum magnitude de-
rived from g-band light curves (Figure 9 feature maps) do not strongly
differentiate AM CVn systems from other classes, contrary to the
expectation of higher (and consequently fainter) values. Similar ob-
servations hold true for the r-band (Figure 10), with the exception of
the minimum magnitude in the r-band (min_mag_r), where notably
elevated (i.e., fainter) values cluster around node (1,4), associated
with the highest AM CVn probability (see Figure 8 class maps).
One possible explanation for these findings is that accretion discs in
AM CVns are smaller than those in hydrogen CVs, truncated by the
smaller Roche lobe geometry. As emissions in the r-band primarily
originate from the cooler outer regions of the accretion disc, the ef-
fective surface area of these regions is considerably smaller for the
compact AM CVn discs.

To become detectable, AM CVn systems would be required to be
situated at closer distances, thereby inducing higher parallax mea-
surements and, in cases where tangential motion occurs, observable
proper motion (pm). While node (1,4) within the corresponding fea-
ture maps in Figure 11 may not contain the highest values (which are
located at node (3,7) and associated with the SU UMa region), they
still exhibit values sufficiently high enough to align with our expec-
tations when compared to regions associated with other classes.

The average ZTF g-r colours, along with Gaia colours (involving
RP data), are strong discriminators effectively separating AM CVn
systems from other classes, as evident in Figure 11. However, when
it comes to outburst-specific features (e.g., npeaks_2to5; Figures
9 and 10), their effectiveness diminishes. Contributing factors to
this reduced performance may be due to the scarcity of AM CVn
examples within the dataset, coupled with variations in observational
time spans and the sampling of their light curves. Consequently,
this diversity results in a variety of light curve profiles, as depicted
in Figure 1, where the number of sampled outbursts range from
several to none at all. An examination of sources projected onto
latent space regions where the boundaries between AM CVn and
SU UMa classes, as well as between AM CVn and nova classes,
blend together (see Figure 8), suggests that these factors contribute
significantly to the observed classification ambiguity.

4.1.4 Novae

Despite a low sample size, the nova class achieves a recall score of
0.50 and a precision of 0.64. A significant source of false-positive
predictions in the nova class can be attributed to the SU UMa class.
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A possible explanation could simply be due to nova dataset examples
consisting largely of extragalactic sources, visible during the time of
peak eruption brightness. These light curves bear a resemblance to
those of SU UMa systems where only one outburst (often a superout-
burst) has been sampled. Consequently a low number of observations
is associated with the class, as is the case for SU UMa systems.

Two members of the nova class within the test set have missclas-
sifications as VY Scl. A possible explanation could be provided by
ZTF21abmbzax (example light curve in Figure 1), which displays
a ’dust dip’ explained as being generated by dust in the eruption
ejecta absorbing photons and re-emitting in the infra-red (Strope
et al. 2010). This characteristic resembles a VY Scl low state excur-
sion. Another eruption light curve profile mentioned in Strope et al.
(2010) is that which exhibits a ’flat top and jitters’ - cuspy profiles at
eruption maximum. This is seen in ZTF19abirmkt, and could be re-
sponsible for missclassifications of novae as magnetic CV members.
Projections of these sources onto the GTM latent space of Figure 8
align with these interpretations, with ZTF21abmbzax projected onto
node (6,3), located in between the nova and VY Scl structure cores,
and ZTF19abirmkt projected onto node (3,3) located between the
nova and polar structure cores.

4.1.5 Remaining classes

The separation between the intermediate polars, polars, nova-likes,
and the VY Scl nova-like subtype arises from several physical proper-
ties manifested in their light curves, as discussed in the introduction.
As just demonstrated in previous subsections, comparison of the g
and r band feature maps within Figures 9 and 10 with the class prob-
abilities depicted in the Figure 8 class maps, help highlight the light
curve attributes most relevant for class separation.

The VY Scl class stands out with its deep low brightness state
excursions such that low values of eta_e appear in the relevant g and
r band feature maps near node (7,1), associated with the highest VY
Scl class probability (see class maps). This feature reflects the degree
of independence between successive data points, where magnetic
systems exhibit higher values due to hourly timescale variations,
while VY Scl systems show lower values due to longer timescale
variations. Furthermore, VY Scl low state excursions can induce a
high skewness in magnitudes (Skew), and due stable and prolonged
high-brightness states, give rise to the highest standstill level values
(stdstilllev_t20s10), as feature and class maps demonstrate.

Eclipses within the nova-like class, as exemplified by
ZTF18abajshu in Figure 1, push the standstill level into a range
occupied by Z Cams, potentially causing confusion between these
two classes. Confusion also arises between nova-likes and the SU
UMa class. The light curves of sources where such confusion oc-
curs are marked by a limited number of data points, this is seen in
the n_obs feature maps for nodes (6,6) and (6,7), situated where the
associated class structures are closest together. Based on the current
feature set, our model finds difficulty in distinguishing systems visi-
ble only during outbursts from nova-likes with limited observational
epochs, though overall, nova-likes remain distinguishable from the
other classes.

The lowest standard deviation (Std) and absolute median deviation
(MedianAbsDev) values are associated with the intermediate polar
and nova-like classes, as seen in the feature maps. This aligns with
the less frequent low state excursions observed in intermediate polars
and nova-likes compared to polars and VY Scl systems in the ZTF
light curves.

As explained by Hameury & Lasota (2017), most intermediate po-
lars possess accretion disks truncated at inner radii due to the white

dwarf’s magnetism. This may lead to dwarf nova outbursts charac-
terised by lower amplitudes and shorter durations. The mixture of
outbursting and non-outbursting intermediate polars, coupled with
less distinct outburst profiles, contributes to feature maps displaying
lower amplitude and variability-related values for intermediate po-
lars compared to dwarf novae. Non-outbursting intermediate polars
may provide an explanation for confusion with polars, indeed, this
is supported by the projection of intermediate polar ZTF18abaiuvj
(Figure 1) onto a region associated with polars within the GTM latent
space (Figure 8).

4.1.6 Evolutionary factors

Separating cataclysmic variables into distinct classes is one that is a
challenge for experts on the subject who must wrestle with the fact
that as these systems evolve, they transition from displaying traits
characteristic of one class to another such that boundaries between
classes are blurred (e.g., Warner 1995; Hellier 2001; Förster et al.
2021; Paczyński 1971; Shafter 1992). This is a consequence of the
requirement for stable mass transfer that depends upon the magnetic
braking and gravitational wave radiation angular momentum loss
mechanisms to drive systems to shorter periods. In so doing this
allows the mass losing donor to continue transferring mass by main-
taining contact with its Roche lobe (e.g., Paczynski & Sienkiewicz
1983; Hellier 2001).

The shortening of orbital periods, donor composition changes, and
shrinkage of the accretion disk amongst several other factors drive
the class transitions. At long periods (typically 3-6 hours) the high
mass transfer rates allow the accretion disk to be maintained in a
stable hot viscous state, such that no dwarf nova outbursts are ob-
served, these systems form the nova-likes. As the mass transfer rates
drop, the accretion disk straddles the stability threshold, below which
the disk is cool, non-viscous and unstable to dwarf nova outbursts
(Shafter 1992). Systems lying close to this threshold form the Z
Cams, with periods of standstill, akin to nova-likes, and outbursting
episodes typical of dwarf novae. The continuing evolution induces an
unstable disk, where we see a transition to the semi-regular outbursts
of U Gems and then the SU UMa systems where the much shorter
periods (< 2 hours) introduce tidal effects driving the superoutbursts
they are known for. SU UMa systems comprise ER UMa subtypes,
where above average mass transfer rates lead to short superoutburst
recurrence periods and rapid fire normal outbursts that may cause
confusion with the Z Cam class; and the WZ Sge subtypes (shortest
period SU UMa) whose donor composition now drives an increase
in orbital period.

As with hydrogen CVs, helium CVs (AM CVns) undergo evo-
lution. Due to a degenerate/semi-degenerate donor, evolution once
mass transfer starts (at periods of 5-10 minutes) is towards longer
periods, during which accretion may transition from direct (no disk),
to hot stable, then unstable disks subject to the He CV equivalent of
dwarf nova outbursts (Nelemans 2005; Solheim 2010).

Nova eruptions are a possibility for all systems should conditions
for hydrogen fusion be present under degenerate conditions on the
WD surface; this is far more likely to occur for the highest mass
transfer rate systems with high mass WD accretors (e.g., Munari
2012; Chomiuk et al. 2020; Darnley et al. 2006; Darnley & Henze
2020.

The presence of strong magnetic fields for the intermediate polar
or polar label requires observations of pulsed X-rays and/or polarime-
try to complicate matters further. In addition to the above, one must
factor in the orbital inclination that determines the overall emission
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contribution from the accretion disk and thereby impacts measure-
ments such as colour and brightness.

The evolutionary changes are evident in many of our light curves.
CR Boo (ZTF18adkhuxp; Figure 1), is an AM CVn with a standstill to
its name (Kato et al. 2023); high mass transfer rate systems residing
amongst the U Gem class manifest as dwarf nova outbursts with
very short recurrence times indicative of a Z Cam class; the ER UMa
subclass (Kato et al. 2013) of SU UMa systems may also be confused
with the Z Cam class due to their high mass transfer rates and rapid
outbursts. With respect to intermediate polars a range of light curve
morphologies are possible (e.g., Šimon 2021). Short duration low
state transitions, dwarf nova outbursts and more stable long term
light curves are present within our light curve sample, consequently,
a confusion with any of the other classes is possible. Constructing
a classifier in light of these intricacies will naturally produce class
confusion despite incorporating a wide ranging feature set inclusive
of astrometric data and an attempt to produce a dataset with accurate
class labels. The confusion matrix and class maps in combination
with the example light curves displayed in figure 1 are a visual
representation of this very aspect of CV classification.

4.2 Pipeline implementation

A substantial portion of the alert stream filter consists of either known
or candidate CVs (according to the AAVSO VSX list). This is positive
news, indicating that the filter effectively retains them in the stream.
Consequently, the undiscovered CV candidates have a promising
likelihood of being contained within the remaining alerts that have
successfully passed through the filter. The approximate class propor-
tions of the confirmed or candidate objects are as follows: 20% SU
UMa (including the WZ Sge and ER UMa subtypes), 4% Z Cam, 3%
U Gem, 59% dwarf novae without further subdivision, 3% magnetic
CVs, 6% nova-likes (including subclasses), and less than 1% AM
CVn. The remaining confirmed or candidate CVs form a mixture of
several sources labelled as novae due to an eruption that may have oc-
curred before ZTF observations, a recurrent nova, and CVs without
further subdivision. These proportions stem from a variety of factors
that may include: the frequent occurrence of alert-triggering events
in dwarf novae leading to their relatively higher representation; the
inherent faintness of short (or ultrashort) period CVs, making their
detection less probable; the need for supporting evidence, such as pe-
riodic variability on short timescales (minutes to hours), polarimetry,
and/or X-ray emission, to confidently confirm a CV as magnetic; and
the establishment of specific thresholds in our alert filtering, e.g.,
excluding CVs with a g-r colour index exceeding 0.7.

The substantial contribution of low-variability sources among the
remaining filter targets results from the omission of a magnitude
change condition. Nevertheless, it was observed that incorporating
such a condition restricted the detection of confirmed/candidate out-
bursting CVs, unless a considerably low threshold was applied. No-
tably, our classifier overwhelmingly assigns the nova-like label to
low (or slowly varying) sources, thereby enabling the classifier to al-
locate the remaining higher variability sources into distinct classes.
Nonetheless, we retain the option to implement a magnitude change
criteria should we choose to focus on specific variability types.

Referring to Figure 2, configuring the filter to retain alerting
sources with a ZTF g-r colour of <= 0.7 is expected to encompass
the vast majority of the shortest period systems, SU UMa, and AM
CVn candidates, along with a significant portion of the remaining
classes. However, expanding the filter to include all examples would
inevitably lead to a rise in contamination from non-CVs, such as
Mira variables and AGN candidates (as observed in the June 2023

sample). Similar to the magnitude change filtering, we are actively
exploring the option to adjust the colour constraint, aiming to focus
on specific CV subclasses.

The ML classifier demonstrates its greatest strength when applied
to the filter output by effectively distinguishing between outbursting
and non-outbursting sources, a characteristic mirrored in the test set
predictions. Also mirroring the test set results is the further separation
of confirmed, candidate, or likely (from our inspection) SU UMa
from Z Cam sources; and the separation of light curves with polar and
VY Scl like variability assigned to those respective classes. However,
when we enter the low sampling regime, the classifier struggles to
assign alerting sources into what we would consider the appropriate
class. For example several poorly sampled though likely outbursting
systems (where quiescent magnitudes are not sampled) are assigned
the nova-like or polar classes. However, on the whole, these sources
tend to be assigned one the dwarf nova classes or the AM CVn class
(should an especially blue colour be calculated).

5 CONCLUSIONS

In this paper, we developed and applied a machine learning pipeline
to detect and categorise cataclysmic variables (CVs) and their sub-
types from the ZTF alerts stream. Our pipeline’s alert filtering stage
effectively retains both known and potential CVs across various sub-
classes, thanks to a multi-parameter g-r colour threshold and the
omission of a magnitude change condition. This approach accom-
modates colour changes during dwarf nova outbursts.

The performance of our ML classifier is largely dependent on the
ability of our dataset to provide an accurate representation of the
diversity within the CV population. This diversity is clearly present
in the example light curves (see Figure 1), however, imbalance in this
diversity (class imbalance) and commonalities in the types of photo-
metric variability between classes renders CV subtype classification
a particularly challenging task. Evolutionary factors drive the diffi-
culty in arriving at concrete class labels both for experts in the subject
and our ML classifier. The challenge is compounded by inadequate
sampling of light curves. Despite these difficulties, an exhaustive ex-
amination of several ML algorithms, trained with a comprehensive
feature set, and operating under a selection of class balancing and
feature selection techniques, yielded a classifier with a prediction
pattern that can be understood in the context of CV evolution.

Latent space representations of this prediction pattern using GTM
(class maps) provide an easily interpretable avenue for visualising
this evolution. The accompanying feature maps provide a convenient
method of finding those features most relevant for a model’s assign-
ment of a given class. They also provide us with the properties that
contribute to classification error, where in many cases the answers
are linked to evolutionary factors. Though not explored in this work,
these feature maps provide a method to pare down the feature set
by eliminating features that provide little benefit for discrimination
between classes.

Implementation of the pipeline on the ZTF stream has, over the
period of June 2023 alone, yielded a sample of new CV candidates,
These are largely of an outbursting nature, with several magnetic CV
candidates. With further improvements to the pipeline underway,
such as filter threshold adjustments and inclusion of computer vision
techniques to provide an automated interpretation of salient light
curve characteristics, we aim to reduce contamination of non-CVs
(e.g, Mira variables and active galactic nuclei) and produce a ML
classifier with greater class distinction powers.

Given the fuzzy boundary between CV subclasses for the reasons
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mentioned, it may be prudent to apply stricter criteria for dataset
inclusion, focusing only on clear examples of a given class. With this
approach, one relies less on definitive class labels, but more on the
probability of class belonging. Alternative approaches may include
adopting a multi-label approach that takes into consideration class
boundary crossing variability, or an unsupervised learning strategy
that does away with existing class labels, tasking algorithms with
finding similarities, differences and structure in the data itself.
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